Processing math: 100%
Google
 
Web unafbapune.blogspot.com

Friday, April 11, 2014

 

Probability density function

Joint pdf

  fX,Y(x,y)dxdy=1FX,Y(x,y)=P(Xx,Yy)=yxfX,Y(s,t)dsdtcumulative density function (CDF) fX,Y(x,y)=d2dxdyFX,Y(x,y)

From joint to marginal

  fX(x)=fX,Y(x,y)dyFX(x)=P(Xx)=x(fX,Y(s,t)dt)ds

Y=aX+b

  pY(y)=P(Y=y)=P(y=aX+b)=P(X=yba)=pX(yba)discrete r.v.FY(y)=P(Yy)=P(aX+by)=P(Xyba)=FX(yba)fY(y)=ddxFX(yba)=1|a|fX(yba)continuous r.v.

Z=X+Y

(X,Y independent)
  PZ(z)=xP(X=x,Y=zx)=pZ(z)pZ(z)=xpX(x)pY(zx)

Discrete convolution mechanics

Given z and Z=X+Y, find pZ(z) from pX(x) and pY(y).
  fZ|X(z|x)=fY+X|X(z|x)=fY+X(z)by independence of X,Y=fY(zx)fX+b(x)=fX(xb), see Lec 11

Joint pdf of Z and X

  fX,Z(x,z)=fX(x)fZ|X(z|x)=fX(x)fY(zx)fZ(z)=fX,Z(x,z)dx=fX(x)fY(zx)dx

Y=g(X)

How to find fY(y) in general ?
  FY(y)=P(g(X)y)fY(y)=ddyFY(y)

Y=g(X) when g is monotonic

  FY(y)=P(g(X)y)=P(Xh(y))=FX(h(y))fY(y)=ddyFY(y)=ddyFX(h(y))=fX(h(y))|ddyh(y)|

Source: MITx 6.041x, Lecture 9, 11, 12.


Comments: Post a Comment

<< Home

This page is powered by Blogger. Isn't yours?