Google
 
Web unafbapune.blogspot.com

Friday, April 11, 2014

 

Probability density function

Joint pdf

  \[ \begin{aligned} \int \int f_{X,Y}(x,y) \, dx \, dy &= 1 \\ F_{X,Y}(x,y) &= P(X \le x, Y \le y) = \int_{-\infty}^y \int_{-\infty}^x f_{X,Y}(s,t) \,ds\, dt & \text{cumulative density function (CDF) } \\ f_{X,Y}(x,y) &= \frac{d^2}{dx\, dy} F_{X,Y}(x,y) \\ \end{aligned} \]

From joint to marginal

  \[ \begin{aligned} f_X(x) &= \int f_{X,Y}(x,y)\,dy \\ F_X(x) &= P(X \le x) = \int_{-\infty}^x \bigg( \int_{-\infty}^\infty f_{X,Y}(s,t) \, dt \bigg) ds \\ \end{aligned} \]

\(Y = aX + b\)

  \[ \begin{aligned} p_Y(y) &= \mathbb{P}(Y=y) = \mathbb{P}(y=aX+b) = \mathbb{P}(X=\frac{y-b}{a}) = p_X(\frac{y-b}{a}) & \text{discrete r.v.} \\ F_Y(y) &= \mathbb{P}(Y \le y) = \mathbb{P}(aX+b \le y) = \mathbb{P}(X \le \frac{y-b}{a}) = F_X(\frac{y-b}{a}) \\ \color{orange}{f_Y(y)} &= \frac{d}{dx}F_X(\frac{y-b}{a}) = \color{orange}{\frac{1}{|a|}\cdot f_X(\frac{y-b}{a})} & \text{continuous r.v.} \\ \end{aligned} \]

\(\color{red}{Z = X + Y}\)

\(\quad(X,Y\) independent)
  \[ \begin{aligned} \mathbb{P}_Z(z) &= \sum_x \mathbb{P}(X=x, Y=z-x) = p_Z(z) \\ p_Z(z) &= \sum_x p_X(x) \cdot p_Y(z - x) \\ \end{aligned} \]

Discrete convolution mechanics

Given \(z\) and \(Z=X+Y\), find \(p_Z(z)\) from \(p_X(x)\) and \(p_Y(y)\).
  \[ \begin{aligned} \color{blue}{f_{Z|X}(z|x)} &= f_{Y+X|X}(z|x) = f_{Y+X}(z) & \text{by independence of } X,Y \\ &= \color{blue}{f_Y(z-x)} & \color{orange}{f_{X+b}(x) = f_X(x-b)}, \text{ see Lec 11} \end{aligned} \]

Joint pdf of Z and X

  \[ \begin{aligned} f_{X,Z}(x,z) &= f_X(x)\cdot \color{blue}{f_{Z|X}(z|x)} = f_X(x) \cdot \color{blue}{f_Y(z-x)} \\ f_{Z}(z) &= \int_{-\infty}^\infty f_{X,Z}(x,z)\,dx = \int_{-\infty}^\infty f_X(x) \cdot \color{blue}{f_Y(z-x)} \,dx \\ \end{aligned} \]

\(Y = g(X)\)

\(\quad\) How to find \(f_Y(y)\) in general ?
  \[ \begin{aligned} F_Y(y) &= \mathbb{P}(g(X) \le y) \\ f_Y(y) &= \frac{d}{dy}F_Y(y) \\ \end{aligned} \]

\(Y = g(X)\) when \(g\) is monotonic

  \[ \begin{aligned} F_Y(y) &= \mathbb{P}(g(X) \le y) = \mathbb{P}(X \le h(y)) = F_X(h(y)) \\ f_Y(y) &= \frac{d}{dy}F_Y(y) = \frac{d}{dy}F_X\left(h(y)\right) = f_X\left(h(y)\right) \big\lvert \frac{d}{dy} h(y) \big\rvert \\ \end{aligned} \]

Source: MITx 6.041x, Lecture 9, 11, 12.


Comments: Post a Comment

<< Home

This page is powered by Blogger. Isn't yours?