Joint pdf
|
∫∫fX,Y(x,y)dxdy=1FX,Y(x,y)=P(X≤x,Y≤y)=∫y−∞∫x−∞fX,Y(s,t)dsdtcumulative density function (CDF) fX,Y(x,y)=d2dxdyFX,Y(x,y) |
From joint to marginal
|
fX(x)=∫fX,Y(x,y)dyFX(x)=P(X≤x)=∫x−∞(∫∞−∞fX,Y(s,t)dt)ds |
Y=aX+b
|
pY(y)=P(Y=y)=P(y=aX+b)=P(X=y−ba)=pX(y−ba)discrete r.v.FY(y)=P(Y≤y)=P(aX+b≤y)=P(X≤y−ba)=FX(y−ba)fY(y)=ddxFX(y−ba)=1|a|⋅fX(y−ba)continuous r.v. |
Z=X+Y
(X,Y independent)
|
PZ(z)=∑xP(X=x,Y=z−x)=pZ(z)pZ(z)=∑xpX(x)⋅pY(z−x) |
Discrete convolution mechanics
Given z and Z=X+Y, find pZ(z) from pX(x) and pY(y).
|
fZ|X(z|x)=fY+X|X(z|x)=fY+X(z)by independence of X,Y=fY(z−x)fX+b(x)=fX(x−b), see Lec 11 |
Joint pdf of Z and X
|
fX,Z(x,z)=fX(x)⋅fZ|X(z|x)=fX(x)⋅fY(z−x)fZ(z)=∫∞−∞fX,Z(x,z)dx=∫∞−∞fX(x)⋅fY(z−x)dx |
Y=g(X)
How to find fY(y) in general ?
|
FY(y)=P(g(X)≤y)fY(y)=ddyFY(y) |
Y=g(X) when g is monotonic
|
FY(y)=P(g(X)≤y)=P(X≤h(y))=FX(h(y))fY(y)=ddyFY(y)=ddyFX(h(y))=fX(h(y))|ddyh(y)| |
Source: MITx 6.041x, Lecture 9, 11, 12.
# posted by rot13(Unafba Pune) @ 4:56 PM
