Google
 
Web unafbapune.blogspot.com

Sunday, February 16, 2014

 

Triangular angle bisector

Given any triangle with an angle bisector, like:

It can be shown that:
  \[ \begin{aligned} {XZ \over XY} = {ZW \over WY} \\ \end{aligned} \]
Why ? By the Law of Sines,
  \[ \begin{aligned} {XZ \over \sin{\left(180-(\alpha + \beta)\right)}} &= {ZW \over \sin{\alpha}} \\ {WY \over \sin{\alpha}} &= {XY \over \sin{(\alpha + \beta)}} \\ \end{aligned} \]
But \(\sin{\left(180-(\alpha + \beta)\right)} = \sin{(\alpha + \beta)}\). So,
  \[ \begin{aligned} {XZ \over \sin{\left(180-(\alpha + \beta)\right)}} &= {XZ \over \sin{(\alpha + \beta)}} = {ZW \over \sin{\alpha}} \\ \therefore {XZ \over ZW} &= {\sin{(\alpha + \beta)} \over \sin{\alpha}} \\ \end{aligned} \]
Recall
  \[ \begin{aligned} {WY \over \sin{\alpha}} &= {XY \over \sin{(\alpha + \beta)}} \\ \therefore {\sin{(\alpha + \beta)} \over \sin{\alpha}} &= {XY \over WY} \\ \end{aligned} \]
Therefore,
  \[ \begin{aligned} {XZ \over ZW} &= {XY \over WY} \\ {XZ \over XY} &= {ZW \over WY} \\ \end{aligned} \]
\(\Box\)


This page is powered by Blogger. Isn't yours?