Given any triangle with an angle bisector, like:
It can be shown that:
Why ? By the
Law of Sines,
|
XZsin(180−(α+β))=ZWsinαWYsinα=XYsin(α+β) |
But
sin(180−(α+β))=sin(α+β). So,
|
XZsin(180−(α+β))=XZsin(α+β)=ZWsinα∴ |
Recall
|
\begin{aligned}
{WY \over \sin{\alpha}} &= {XY \over \sin{(\alpha + \beta)}} \\
\therefore {\sin{(\alpha + \beta)} \over \sin{\alpha}} &= {XY \over WY} \\
\end{aligned}
|
Therefore,
|
\begin{aligned}
{XZ \over ZW} &= {XY \over WY} \\
{XZ \over XY} &= {ZW \over WY} \\
\end{aligned}
|
\Box
# posted by rot13(Unafba Pune) @ 3:31 PM
