Google
 
Web unafbapune.blogspot.com

Sunday, May 26, 2013

 

Some useful Talyor series

 

For all \(x\):

\[ \begin{aligned} e^x &= \sum_{k=0}^\infty \frac{x^k}{k!} \\ \cos x &= \sum_{k=0}^\infty (-1)^k \frac{x^{2k}}{(2k)!} \\ \sin x &= \sum_{k=0}^\infty (-1)^k \frac{x^{2k+1}}{(2k+1)!} \\ \cosh x &= \sum_{k=0}^\infty \frac{x^{2k}}{(2k)!} \\ \sinh x &= \sum_{k=0}^\infty \frac{x^{2k+1}}{(2k+1)!} \\ \end{aligned} \]
 

For \(\lvert x \rvert < 1\):

\[ \begin{aligned} \frac{1}{1 - x} &= \sum_{k=0}^\infty x^k \\ \ln(1+x) &= \sum_{k=1}^\infty (-1)^{k+1} \frac{x^k}{k} \\ \arctan(x) &= \sum_{k=0}^\infty (-1)^k \frac{x^{2k+1}}{2k+1} \\ (1 + x)^\alpha &= \sum_{k=0}^\infty {\alpha \choose k} x^k \\ \end{aligned} \]

Hyperbolic trigonometric functions

  \[ \begin{aligned} \sinh(x) &= \frac{e^x - e^{-x}}{2} \\ \cosh(x) &= \frac{e^x + e^{-x}}{2} \\ \tanh(x) &= \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{\sinh(x)}{\cosh(x)} \\ \end{aligned} \]  

Saturday, May 25, 2013

 

Taylor Series about \(x = 0\)

The Taylor series about \(x = 0\) of any given function:
  \[ \begin{aligned} \displaystyle f(x) = \sum_{k=0}^\infty f^{(k)}(0)\frac{x^k}{k!} \\ \end{aligned} \]
Some interesting observations:


 

\(e^x\) as long polynomial

It turns out \(e^{x}\) can be defined as a long polynomial:
  \[ \begin{aligned} \displaystyle e^x = \sum_{k=0}^\infty \frac{x^k}{k!} \\ \end{aligned} \]
which has some nice properties.

For example, as a polynomial it's not hard to see that the derivative of \(e^x\) is equal to itself, and the integral of \(e^x\) is \(e^x + C\).

Per Euler's formula,
  \[ \begin{aligned} \displaystyle e^{ix} = \cos(x) + i \sin(x) \\ \end{aligned} \]
but treating \(e^{ix}\) as a long polynomial,
  \[ \begin{aligned} \displaystyle e^{ix} &= 1 + ix + \frac{i^2x^2}{2!} + \frac{i^3x^3}{3!} + \frac{i^4x^4}{4!} + \frac{i^5x^5}{5!} + \frac{i^6x^6}{6!} + \cdots \\ \displaystyle &= 1 + ix - \frac{x^2}{2!} - \frac{ix^3}{3!} + \frac{x^4}{4!} + \frac{ix^5}{5!} - \frac{x^6}{6!} + \cdots \\ \displaystyle &= (1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots) + i(x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots) \\ \end{aligned} \]
Therefore,
  \[ \begin{aligned} \displaystyle \cos x &= \sum_{k=0}^\infty (-1)^k\frac{x^{2k}}{(2k)!} \\ \displaystyle \sin x &= \sum_{k=0}^\infty (-1)^k\frac{x^{2k+1}}{(2k+1)!} \\ \end{aligned} \]
Treating these as long polynomials, it's rather easy to verify that the derivative of \(\cos x\) is \(- \sin x\), and likewise the derivative of \(\sin x\) is \(\cos x\).


This page is powered by Blogger. Isn't yours?