Friday, April 04, 2014
Expectation
E[X]=∑xx⋅pX(x)or∫x⋅fX(x)dxE[X|A]=∑xx⋅pX|A(x)or∫x⋅fX|A(x)dxg(y)=E[X|Y=y]=∑xx⋅pX|Y(x|y)or∫x⋅fX|Y(x|y)dxg(Y)=E[X|Y]conditional expectation as r.v. |
Expected value rule
E[g(X)]=∑xg(x)⋅pX(x)or∫g(x)⋅fX(x)dxE[g(X)|A]=∑xg(x)⋅pX|A(x)or∫g(x)⋅fX|A(x)dxE[g(X,Y)]=∑x∑yg(x,y)⋅pX,Y(x,y)or∫∫g(x,y)⋅fX,Y(x,y)dxdy |
Total probability and expectation theorems
P(B)=P(A1)⋅P(B|A1)+⋯+P(An)⋅P(B|An)pX(x)=P(A1)⋅pX|A1(x)+⋯+P(An)⋅pX|An(x)FX(x)=P(X≤x)=P(A1)⋅P(X≤|A1)+⋯+P(An)⋅P(X≤x|An)=P(A1)⋅FX|A1(x)+⋯+P(An)⋅FX|An(x)fX(x)=P(A1)⋅fX|A1(x)+⋯+P(An)⋅fX|An(x)∫x⋅fX(x)dx=P(A1)∫x⋅fX|A1(x)dx+⋯+P(An)∫x⋅fX|An(x)dxE[X]=P(A1)⋅E[X|A1]+⋯+P(An)⋅E[X|An]E[X1+⋯+XN]=∑npN(n)⋅E[X1+⋯+XN|N=n]=∑npN(n)⋅n⋅E[X]=E[N]⋅E[X] |
Linearity of expectations
E[aX+b]=aE[X]+bE[X+Y]=E[X]+E[Y] |
Law of iterated expectations
E[E[X|Y]]=∑yE[X|Y=y]⋅pY(y)=E[X]E[E[X1+⋯+XN|N]]=E[N⋅E[X]]=E[N]⋅E[X] |
Source: MITx 6.041x, Lecture 9, 13.