Processing math: 100%
Google
 
Web unafbapune.blogspot.com

Friday, April 04, 2014

 

Expectation

  E[X]=xxpX(x)orxfX(x)dxE[X|A]=xxpX|A(x)orxfX|A(x)dxg(y)=E[X|Y=y]=xxpX|Y(x|y)orxfX|Y(x|y)dxg(Y)=E[X|Y]conditional expectation as r.v.

Expected value rule

  E[g(X)]=xg(x)pX(x)org(x)fX(x)dxE[g(X)|A]=xg(x)pX|A(x)org(x)fX|A(x)dxE[g(X,Y)]=xyg(x,y)pX,Y(x,y)org(x,y)fX,Y(x,y)dxdy

Total probability and expectation theorems

  P(B)=P(A1)P(B|A1)++P(An)P(B|An)pX(x)=P(A1)pX|A1(x)++P(An)pX|An(x)FX(x)=P(Xx)=P(A1)P(X|A1)++P(An)P(Xx|An)=P(A1)FX|A1(x)++P(An)FX|An(x)fX(x)=P(A1)fX|A1(x)++P(An)fX|An(x)xfX(x)dx=P(A1)xfX|A1(x)dx++P(An)xfX|An(x)dxE[X]=P(A1)E[X|A1]++P(An)E[X|An]E[X1++XN]=npN(n)E[X1++XN|N=n]=npN(n)nE[X]=E[N]E[X]

Linearity of expectations

  E[aX+b]=aE[X]+bE[X+Y]=E[X]+E[Y]

Law of iterated expectations

  E[E[X|Y]]=yE[X|Y=y]pY(y)=E[X]E[E[X1++XN|N]]=E[NE[X]]=E[N]E[X]

Source: MITx 6.041x, Lecture 9, 13.


Comments: Post a Comment

<< Home

This page is powered by Blogger. Isn't yours?