A point estimate, ˆθ=g(x), is a number, whereas an estimator, ˆΘ=g(X), is a random variable.
|
ˆθMAP=gMAP(x): maximises pΘ|X(θ|x)ˆθLMS=gLMS(x)=E[Θ|X=x] |
Conditional probability of error
|
P(ˆθ≠Θ|X=x)smallest under the MAP rule |
Overall probability of error
|
P(ˆΘ≠Θ)=∫P(ˆΘ≠Θ|X=x)⋅fX(x)dx=∑θP(ˆΘ≠Θ|Θ=θ)⋅pΘ(θ) |
Mean squared error (MSE)
Minimized when ˆθ=E[Θ], so that
|
E[(Θ−ˆθ)2]=E[(Θ−E[Θ])2]=var(Θ)least mean square (LMS) |
Conditional mean squared error
|
E[(Θ−ˆθ)2|X=x]with observation x |
Minimized when ˆθ=E[Θ|X=x], so that
|
E[(Θ−ˆθ)2|X=x]=E[(Θ−E[Θ|X=x])2|X=x]=var(Θ|X=x)expected performance, given a measurement |
Expected performance of the design:
|
E[(Θ−E[Θ|X])2]=E[var(Θ| X)] |
Note that ˆθ is an estimate whereas ˆΘ=E[Θ|X] is an estimator.
Linear least mean square (LLMS) estimation
Minimize E[(Θ−aX−b)2] w.r.t. a,b
|
ˆΘL=E[Θ]+cov(Θ,X)var(X)(X−E[X])=E[Θ]+ρσΘσX(X−E[X])only means, variances and covariances matter |
Error variance:
|
E[(ˆΘL−Θ)2]=(1−ρ2)⋅var(Θ) |
Source: MITx 6.041x, Lecture 16, 17.
# posted by rot13(Unafba Pune) @ 8:54 AM
