Processing math: 100%
Google
 
Web unafbapune.blogspot.com

Sunday, March 30, 2014

 

Independence

Probabilistic models that do not interact with each other and have no common sources of uncertainty.
  P(AB)=P(A)P(B)iff A and B are independentpX|A(x)=pX(x)for all x iff X and A are independentpX,Y(x,y)=pX(x)pY(y)for all x,y iff X and Y are independentpX,Y,Z(x,y,z)=pX(x)pY(y)pZ(z)for all x,y,z iff X,Y and Z are independent
Note it's always true that
  fX,Y(x,y)=fX|Y(x|y)fY(y)by conditional proability
But
  fX|Y(x|y)fY(y)=fX(x)fY(y)iff X,Y are independent for all x,y

Expectation

In general,
  E[g(x,y)]g(E[x],E[y])eg E[XY]E[X]E[Y]
It's however always true that
  E[aX+b]=aE[X]+bLinearity of Expectation
But if X and Y are independent, then
  E[XY]=E[X]E[Y] and E[g(X)h(Y)]=E[g(X)]E[h(Y)]

Variance

In general,
  var(X+Y)var(X)+var(Y)
It's however always true that
  var(aX)=a2var(X)andvar(X+a)=var(X)
But if X and Y are independent, then
  var(X+Y)=var(X)+var(Y)

Source: MITx 6.041x, Lecture 7.


Comments: Post a Comment

<< Home

This page is powered by Blogger. Isn't yours?