Google
 
Web unafbapune.blogspot.com

Friday, April 04, 2014

 

Variance

  \[ \begin{aligned} var(X) &= \mathbb{E}\left[(X - \mathbb{E}[X])^2\right] \\ &= \mathbb{E}\left[X^2\right] - \big(\mathbb{E}[X]\big)^2 \\ var(X\,|\,Y=y) &= \mathbb{E}\left[\left(X - \mathbb{E}[X\,|\,Y=y]\right)^2\,|\,Y=y\right] \\ \end{aligned} \]

Law of total variance

  \[ \begin{aligned} var(X) &= \mathbb{E}\left[var(X\,|\,Y)\right] + var\big(\mathbb{E}[X\,|\,Y]\big) \\ var(X_1 + \cdots + X_N) &= \mathbb{E}\left[var(X_1 + \cdots + X_N\,|\,N)\right] + var\big(\mathbb{E}[X_1 + \cdots + X_N \,|\,N]\big) \\ &= \mathbb{E}[N] \cdot var(X) + \big(\mathbb{E}[X]\big)^2\cdot var(N) \\ \end{aligned} \]

Covaraince

  \[ \begin{aligned} cov(X,Y) &= \mathbb{E}\left[(X - \mathbb{E}[X])\cdot(Y - \mathbb{E}[Y])\right] \\ &= \mathbb{E}\left[XY\right] - \mathbb{E}[X]\cdot \mathbb{E}[Y] \\ cov(aX+b,Y) &= a\cdot cov(X,Y) \\ cov(X,Y+Z) &= cov(X,Y) + cov(X,Z) \\ \end{aligned} \]

Correlation coefficient

  \[ \begin{aligned} \rho(X,Y) &= \frac{cov(X,Y)}{\sigma_X \sigma_Y} & -1 \le \rho \le 1\\ \end{aligned} \]

Sum of random variables

  \[ \begin{aligned} var(X_1 + X_2) &= var(X_1) + var(X_2) + 2cov(X_1,X_2) \\ var(X_1 - X_2) &= var(X_1) + var(X_2) - 2cov(X_1,X_2) \\ \end{aligned} \]

Source: MITx 6.041x, Lecture 12, 13.


Comments: Post a Comment

<< Home

This page is powered by Blogger. Isn't yours?