For random variable \(X\) and \(Y\), the mutual information between them is defined as:
  |
\[
\begin{aligned}
I(X;Y) = \sum_{x,y}p(x,y)\,\log{p(x,y) \over p(x)\,p(y)} = E \log{p(X,Y) \over p(X)\,p(Y)}
\end{aligned}
\] |
which is symmetrical. Alternatively,
  |
\[
\begin{aligned}
I(X;Y) = \sum_{x,y}p(x,y)\,\log{p(x\,|\,y) \over p(x)} = E \log{p(X|Y) \over p(X)}
\end{aligned}
\] |
Interestingly, the mutual information of a random variable with itself, called the
self-information, is the entropy of the variable, ie \(I(X;X) = H(X)\), for
  |
\[
\begin{aligned}
I(X;X) &= E \log{p(X,X) \over p(X) p(X)} = E \log{p(X) \over p(X) p(X)} \\
&= - E \log{p(X)} \\
&= H(X) \\
\end{aligned}
\] |
Proposition 2.19, provided the entropies and conditional entropies are finite:
  |
\[
\begin{aligned}
I(X;Y) &= H(X) - H(X|\,Y) \\
\end{aligned}
\] |
and
  |
\[
\begin{aligned}
I(X;Y) &= H(X) + H(Y) - H(X,Y) \\
\end{aligned}
\] |
Both equations can be easily verified. For example,
  |
\[
\begin{aligned}
H(X) - H(X|\,Y) &= -E\log p(X) + E \log{p(X|\,Y)} \\
&= -E\log p(X) + E \log{p(X,Y) \over p(Y)} \\
&= E \log{p(X,Y) \over p(X) p(Y)} \\
&= I(X;Y) \\
\end{aligned}
\] |
Furthermore, for random variable \(X, Y\) and \(Z\), the mutual information between \(X\) and \(Y\) conditioning on \(Z\) is defined as:
  |
\[
\begin{aligned}
I(X;Y\,|\,Z) = \sum_{x,y,z}p(x,y,z)\,\log{p(x,y\,|\,z) \over p(x\,|\,z)\,p(y\,|\,z)} = E \log{p(X,Y\,|\,Z) \over p(X\,|\,Z)\,p(Y\,|\,Z)}
\end{aligned}
\] |
Source: Information Theory.
# posted by rot13(Unafba Pune) @ 5:55 PM