Processing math: 66%
Google
 
Web unafbapune.blogspot.com

Saturday, January 04, 2014

 

Ramanujan Q-distribution

Ramanujan Q-distribution:
  N!(Nk)!Nk=exp(lnN!ln(Nk)!klnN)
As we saw earlier, by Stirling's approximation,
  lnN!=(N+12)lnNN+ln2π+O(1N)
Therefore,
  N!(Nk)!Nk=exp((N+12)lnNN+ln2π+O(1N)((Nk+12)ln(Nk)(Nk)+ln2π+O(1Nk))klnN)=exp((N+12)lnNN+ln2π(Nk+12)ln(Nk)+Nkln2πklnN+O(kN(Nk)))=exp((N+12)lnN(Nk+12)ln(Nk)kklnN+O(kN))=exp((N+12)lnN(Nk+12)lnN(1kN)kklnN+O(kN))=exp((N+12)lnN(Nk+12)lnN(Nk+12)ln(1kN)kklnN+O(kN))=exp((Nk+12)ln(1kN)k+O(kN))
Using Taylor expansion,
  ln(1kN)=kNk22N2+O(k3N3)
So,
  N!(Nk)!Nk=exp((Nk+12)(kNk22N2+O(k3N3))k+O(kN))=exp((Nk+12)(kN+k22N2+O(k3N3))k+O(kN))=exp(k+k22N+O(k3N2)k2Nk32N2+O(k4N3)+k2N+k24N2+O(k3N3)k+O(kN))=exp(k22N+O(kN)+O(k3N2))N!(Nk)!Nkek22N
Applying this to the Birthday problem, let
  N= number of possible unique valuesk= number of (uniform) random selections (from N values)P= probability of collision (among the k selections)
  P=1N!(Nk)!Nk
\Box

Source: Analysis of Algorithm


Comments: Post a Comment

<< Home

This page is powered by Blogger. Isn't yours?