Ramanujan Q-distribution:
|
N!(N−k)!Nk=exp(lnN!−ln(N−k)!−klnN) |
As we saw
earlier, by Stirling's approximation,
|
lnN!=(N+12)lnN−N+ln√2π+O(1N) |
Therefore,
|
N!(N−k)!Nk=exp((N+12)lnN−N+ln√2π+O(1N)−((N−k+12)ln(N−k)−(N−k)+ln√2π+O(1N−k))−klnN)=exp((N+12)lnN−N+ln√2π−(N−k+12)ln(N−k)+N−k−ln√2π−klnN+O(kN(N−k)))=exp((N+12)lnN−(N−k+12)ln(N−k)−k−klnN+O(kN))=exp((N+12)lnN−(N−k+12)lnN(1−kN)−k−klnN+O(kN))=exp((N+12)lnN−(N−k+12)lnN−(N−k+12)ln(1−kN)−k−klnN+O(kN))=exp(−(N−k+12)ln(1−kN)−k+O(kN)) |
Using Taylor expansion,
|
ln(1−kN)=−kN−k22N2+O(k3N3) |
So,
|
N!(N−k)!Nk=exp(−(N−k+12)(−kN−k22N2+O(k3N3))−k+O(kN))=exp((N−k+12)(kN+k22N2+O(k3N3))−k+O(kN))=exp(k+k22N+O(k3N2)−k2N−k32N2+O(k4N3)+k2N+k24N2+O(k3N3)−k+O(kN))=exp(−k22N+O(kN)+O(k3N2))N!(N−k)!Nk∼e−k22N |
Applying this to the
Birthday problem, let
|
N= number of possible unique valuesk= number of (uniform) random selections (from N values)P= probability of collision (among the k selections) |
\Box
Source: Analysis of Algorithm
# posted by rot13(Unafba Pune) @ 4:20 PM
