Google
 
Web unafbapune.blogspot.com

Saturday, January 11, 2014

 

\(p(x,y,z) = a(x,y)b(y,z)\)

Proposition 2.5 For random variable \(X,Y\), and \(Z\), \(X \perp Z\,|\,Y\) if and only if:
  \[ \begin{aligned} p(x,y,z) = a(x,y)b(y,z) \\ \end{aligned} \]
Why ? The only-if part is rather trivial. To prove the "if" part, the key is to consider \(p(x,y), p(y,z)\), and \(p(y)\) individually, expressing each in terms of the functions \(a\), and \(b\). Here we go. Suppose \(\color{teal}{p(x,y,z) = a(x,y)b(y,z)}\).
  \[ \begin{aligned} \color{blue}{p(x,y)} &= \sum_z \color{teal}{p(x,y,z)} = \sum_z \color{teal}{a(x,y) b(y,z)} = \color{blue}{a(x,y) \sum_z b(y,z)} \\ \color{orange}{p(y,z)} &= \sum_x \color{teal}{p(x,y,z)} = \sum_x \color{teal}{a(x,y) b(y,z)} = \color{orange}{b(y,z) \sum_x a(x,y)} \\ p(y) &= \sum_z \color{orange}{p(y, z)} = \sum_z \left( \color{orange}{b(y,z) \sum_x a(x,y)} \right) \\ &= \left(\sum_x a(x,y)\right) \left(\sum_z b(y,z)\right) \\ &= \color{orange}{p(y,z) \over b(y,z)} \color{blue}{p(x,y) \over a(x,y)} \\ &= \frac{p(x,y) p(y,z)}{\color{teal}{p(x,y,z)}} \\ \therefore p(x,y,z) &= \frac{p(x,y) p(y,z)}{p(y)} & \text{ie }X \perp Z\,|\,Y \\ \end{aligned} \]
\(\Box\)

Source: Information Theory.


Comments: Post a Comment

<< Home

This page is powered by Blogger. Isn't yours?