Saturday, January 11, 2014
X⊥Z|Y
Definition 2.4 (Conditional Independence): X is independent of Z conditioning on Y, if
p(x,y,z)={p(x,y)p(y,z)p(y)=p(x,y)p(z|y)if p(y)>00otherwise. |
p(x,y)p(y,z)p(y)=p(x,y)p(z|y)=p(x|y)p(y,z)=p(x)p(y|x)p(z|y) |
Source: Information Theory.