Saturday, January 11, 2014
\(X \perp Z\, | \,Y\)
Definition 2.4 (Conditional Independence): \(X\) is independent of \(Z\) conditioning on \(Y\), if
  | \[ \begin{aligned} p(x, y, z) &= \\ & \begin{cases} {p(x,y)p(y,z) \over p(y)} = p(x,y)p(z|\,y) & \text{if }p(y) > 0 \\ 0 & \text{otherwise.} \\ \end{cases} \end{aligned} \] |
  | \[ \begin{aligned} {p(x,y)p(y,z) \over p(y)} = p(x,y)p(z|\,y) = p(x|\,y)p(y,z) = p(x)p(y|\,x)p(z|\,y) \end{aligned} \] |
Source: Information Theory.