The Fourier Transform of a function \(f(x)\) can be defined as:
  |
\[
\begin{aligned}
\color{blue}{\widehat{f(x)} = {1 \over \sqrt{2\pi}}\int_{-\infty}^{\infty} e^{-ikx} f(x)\,dx} \\
\end{aligned}
\] |
So,
  |
\[
\begin{aligned}
\color{teal}{\widehat{f'(x)}} &\color{teal}{= {1 \over \sqrt{2\pi}}\int_{-\infty}^{\infty} e^{-ikx} f'(x)\,dx} & \text{substitue } f(x) \text{ by } f'(x) \\
\end{aligned}
\] |
Using integration by parts, let
  |
\[
\begin{aligned}
dv &= f'(x)\,dx \\
v &= f(x) \\
u &= e^{-ikx} \\
du &= -ike^{-ikx}\,dx \\
\end{aligned}
\] |
Now,
  |
\[
\begin{aligned}
\color{teal}{{1 \over \sqrt{2\pi}}\int_{-\infty}^{\infty} e^{-ikx} f'(x)\,dx} &= {1 \over \sqrt{2\pi}} \int_{-\infty}^{\infty} u\,dv \\
&= {1 \over \sqrt{2\pi}} \left( uv \bigg|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} v\,du \right) \\
&= \color{blue}{{1 \over \sqrt{2\pi}}} \left( e^{-ikx} f(x) \bigg|_{-\infty}^{\infty} + ik \color{blue}{\int_{-\infty}^{\infty} e^{-ikx}f(x)\,dx} \right) \\
\end{aligned}
\] |
Suppose \(f(x) \rightarrow 0 \) as \(x \rightarrow \pm \infty\),
  |
\[
\begin{aligned}
\color{teal}{{1 \over \sqrt{2\pi}}\int_{-\infty}^{\infty} e^{-ikx} f'(x)\,dx} &= ik \color{blue}{{1 \over \sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx}f(x)\,dx} \\
\therefore \widehat{f'(x)} &= ik \cdot \widehat{f(x)} \\
\end{aligned}
\] |
Telescoping,
  |
\[
\begin{aligned}
\widehat{f^{(n)}} &= (ik)^{n} \cdot \widehat{f} \\
\end{aligned}
\] |
\(\Box\)
Source: Computational Methods for Data Analysis.
# posted by rot13(Unafba Pune) @ 8:12 PM