What is the value this integral ?
Thanks to Euler, we know that
  |
\[
\begin{aligned}
\sin{\theta} &= \frac{e^{i\theta}-e^{-i\theta}}{2i} \\
\cos{\theta} &= \frac{e^{i\theta}+e^{-i\theta}}{2} \\
\therefore \sin{nx} &= \frac{e^{inx}-e^{-inx}}{2i} \\
\cos{mx} &= \frac{e^{imx}+e^{-imx}}{2} \\
\end{aligned}
\] |
Therefore
  |
\[
\begin{aligned}
\int_{-\pi}^{\pi}\sin{nx}\cos{mx}\,dx &= \int_{-\pi}^{\pi} \frac{e^{inx}-e^{-inx}}{2i} \cdot \frac{e^{imx}+e^{-imx}}{2} \,dx \\
&= \frac{1}{4i} \int_{-\pi}^{\pi} \left( e^{i(n+m)x} + e^{i(n-m)x} - e^{-i(n-m)x} - e^{-i(n+m)x} \right)\,dx \\
&= \left[-\frac{e^{i(n+m)x}}{4(n+m)} - \frac{e^{i(n-m)x}}{4(n-m)} - \frac{e^{-i(n-m)x}}{4(n-m)} - \frac{e^{-i(n+m)x}}{4(n+m)} \right]_{-\pi}^{\pi} \\
&= -\frac{1}{4(n+m)}\left[ e^{i(n+m)x} + e^{-i(n+m)x} \right]_{-\pi}^{\pi}
-\frac{1}{4(n-m)}\left[ e^{i(n-m)x} + e^{-i(n-m)x} \right]_{-\pi}^{\pi} \\
\end{aligned}
\] |
But anything of the form:
  |
\[
\begin{aligned}
\left[e^{i\beta x} + e^{-i\beta x}\right]_{-\pi}^{\pi} &=
(\cos{\beta\pi} + i\sin{\beta\pi}) +
(\cos{(-\beta\pi)} + i\sin{(-\beta\pi)}) -
\left[
(\cos{(-\beta\pi)} + i\sin{(-\beta\pi)}) +
(\cos{\beta\pi} + i\sin{\beta\pi})
\right]
\\
&= \cos{\beta\pi} + i\sin{\beta\pi} +
\cos{\beta\pi} - i\sin{\beta\pi} -
\left[
\cos{\beta\pi} - i\sin{\beta\pi} +
\cos{\beta\pi} + i\sin{\beta\pi}
\right]
\\
&= 0 & !
\end{aligned}
\] |
Therefore,
  |
\[
\begin{aligned}
\int_{-\pi}^{\pi}\sin{nx}\cos{mx}\,dx &= 0 \\
\end{aligned}
\] |
\(\Box\)
Who would have thought ?
# posted by rot13(Unafba Pune) @ 7:23 AM