Processing math: 20%
Google
 
Web unafbapune.blogspot.com

Wednesday, August 07, 2013

 

Discrete Calculus

Product Rule

  Δ(ab)n=anΔbn+bnΔan+ΔanΔbn(ab)n=anbn+bnananbnΔ(uv)=uΔv+EvΔu
If a is a polynomial of degree p, then
  Δp+1a=(0)

Falling Power Rule

  nk_=n(n1)(nk+1),n0_=1Δnk_=knk1_nk_=1(n+1)(n+2)(n+k)

Sequence operators

  (Ia)n=an(Ea)n=an+1(Δa)n=an+1an,Δ=EI(a)n=anan1,=IE1(Δa)n=an+12an+an1,second central differenceΔa=Δa

Higher Derivatives

  \begin{aligned} \Delta^k &= (E - I)^k = \sum_{i=0}^k (-1)^{k-i} {k \choose i} E^i \\ \end{aligned}

Anti-difference

  \begin{aligned} \Delta^{-1} &= (E - I)^{-1} = -(I - E)^{-1} = -(I + E + E^2 + E^3 + \cdots) + C \\ \end{aligned}
so long as the sequence a_n is eventually 0

Discrete Fundamental Theorem of Integral Calculus

  \begin{aligned} \sum_{n=A}^B \Delta u &= u \, \bigg \rvert_{n=A}^{B+1} \\ \sum_{n=A}^B \triangledown u &= u \, \bigg \rvert_{n=A-1}^{B} \\ \end{aligned}
Alternatively,
  \begin{aligned} \sum_{n=A}^B u &= \Delta^{-1} u \, \bigg \rvert_{n=A}^{B+1} \\ \sum_{n=A}^B u &= \triangledown^{-1} u \, \bigg \rvert_{n=A-1}^{B} \\ \end{aligned}

Integration by parts

  \begin{aligned} \Delta (uv) &= u \Delta v + Ev \Delta u \\ \sum_{n=A}^B u \Delta v &= uv \, \bigg \rvert_{n=A}^{B+1} - \sum_{n=A}^B Ev \Delta u \\ \end{aligned}

Differential equations

Linear first-order recurrence relation:
  \begin{aligned} u_{n+1} &= \lambda u_n \\ E \, u &= \lambda u \\ (E - \lambda \, I) \, u &= 0 \\ \implies u_n &= u_0 \, \lambda^n \\ \end{aligned}
Linear first-order difference equation:
  \begin{aligned} \Delta u &= \lambda u \\ (E - I) \, u &= \lambda u \\ (E - (\lambda + 1) \, I) \, u &= 0 \\ \implies u_n &= u_0 \, (\lambda + 1)^n \\ \end{aligned}

Numerical ODE's

Many differential equations of the form \displaystyle \frac{dx}{dt} = f(x,t) cannot be solved exactly. Hence the use of numerical ODE's to approximate a solution.

Euler's method

Uses a difference equation to approximate the solution of an initial value problem. Essentially it's Taylor series 1st order approximation for the recursion relation. Given \displaystyle \frac{dx}{dt} = f(x,t) , and initial value x_0 = x(t_0) , Euler's method approximates x(t_*) for some t_* > t_0 .
  \begin{aligned} x_{n+1} = x_n + h\,f(x_n, t_n) \\ t_{n+1} = t_n + h \\ h = \frac{t_* - t_0}{N} \\ \end{aligned}
where N is the number of intervals.

Numerical Integration

How to approximate the definite integral \displaystyle \int_a^b f(x)\,dx via finite sums which approximates the area under the curve ? Common techniques: Riemann sums, trapezoid rules and Simpson's rule.

Left Riemann Sum

  \begin{aligned} \int_a^b f(x)\,dx \approx \sum_{n=0}^{N-1} f_n \cdot (\Delta x)_n = \sum_{n=0}^{N-1} f_n \cdot (x_{n+1} - x_n) \\ \end{aligned}

Right Riemann Sum

  \begin{aligned} \int_a^b f(x)\,dx \approx \sum_{n=1}^{N} f_n \cdot (\triangledown x)_n = \sum_{n=1}^{N} f_n \cdot (x_n - x_{n-1}) \\ \end{aligned}

Trapezoid Rule

An improvement over the left and right Riemann sums by averaging them.
  \begin{aligned} \int_a^b f(x)\,dx \approx \sum_{n=0}^{N-1} \frac{1}{2} (f_n + f_{n+1}) \cdot (\Delta x)_n = \sum_{n=0}^{N-1} \frac{1}{2} (f_n + f_{n+1}) \cdot (x_{n+1} - x_n) \\ \end{aligned}
If sample points are evenly spaced:
  \begin{aligned} \int_a^b f(x)\,dx \approx h \, \bigg(\frac{1}{2}(f_0 + f_N) + \sum_{n=1}^{N-1} f_n \bigg) \\ \end{aligned}
where \displaystyle h = \frac{b-a}{N}


Comments: Post a Comment

<< Home

This page is powered by Blogger. Isn't yours?