Product Rule
|
Δ(ab)n=anΔbn+bnΔan+ΔanΔbn▽(ab)n=an▽bn+bn▽an−▽an▽bnΔ(uv)=uΔv+EvΔu |
If
a is a polynomial of degree
p, then
Falling Power Rule
|
nk_=n(n−1)⋯(n−k+1),n0_=1Δnk_=knk−1_n−k_=1(n+1)(n+2)⋯(n+k) |
Sequence operators
|
(Ia)n=an(Ea)n=an+1(Δa)n=an+1−an,Δ=E−I(▽a)n=an−an−1,▽=I−E−1(▽Δa)n=an+1−2an+an−1,second central difference▽Δa=Δ▽a |
Higher Derivatives
|
\begin{aligned}
\Delta^k &= (E - I)^k = \sum_{i=0}^k (-1)^{k-i} {k \choose i} E^i \\
\end{aligned}
|
Anti-difference
|
\begin{aligned}
\Delta^{-1} &= (E - I)^{-1} = -(I - E)^{-1} = -(I + E + E^2 + E^3 + \cdots) + C \\
\end{aligned}
|
so long as the sequence
a_n is eventually 0
Discrete Fundamental Theorem of Integral Calculus
|
\begin{aligned}
\sum_{n=A}^B \Delta u &= u \, \bigg \rvert_{n=A}^{B+1} \\
\sum_{n=A}^B \triangledown u &= u \, \bigg \rvert_{n=A-1}^{B} \\
\end{aligned}
|
Alternatively,
|
\begin{aligned}
\sum_{n=A}^B u &= \Delta^{-1} u \, \bigg \rvert_{n=A}^{B+1} \\
\sum_{n=A}^B u &= \triangledown^{-1} u \, \bigg \rvert_{n=A-1}^{B} \\
\end{aligned}
|
Integration by parts
|
\begin{aligned}
\Delta (uv) &= u \Delta v + Ev \Delta u \\
\sum_{n=A}^B u \Delta v &= uv \, \bigg \rvert_{n=A}^{B+1} - \sum_{n=A}^B Ev \Delta u \\
\end{aligned}
|
Differential equations
Linear first-order recurrence relation:
|
\begin{aligned}
u_{n+1} &= \lambda u_n \\
E \, u &= \lambda u \\
(E - \lambda \, I) \, u &= 0 \\
\implies u_n &= u_0 \, \lambda^n \\
\end{aligned}
|
Linear first-order difference equation:
|
\begin{aligned}
\Delta u &= \lambda u \\
(E - I) \, u &= \lambda u \\
(E - (\lambda + 1) \, I) \, u &= 0 \\
\implies u_n &= u_0 \, (\lambda + 1)^n \\
\end{aligned}
|
Numerical ODE's
Many differential equations of the form
\displaystyle \frac{dx}{dt} = f(x,t)
cannot be solved exactly. Hence the use of numerical ODE's to approximate a solution.
Euler's method
Uses a difference equation to approximate the solution of an initial value problem. Essentially it's Taylor series 1st order approximation for the recursion relation.
Given
\displaystyle \frac{dx}{dt} = f(x,t)
, and initial value
x_0 = x(t_0)
, Euler's method approximates x(t_*) for some t_* > t_0 .
|
\begin{aligned}
x_{n+1} = x_n + h\,f(x_n, t_n) \\
t_{n+1} = t_n + h \\
h = \frac{t_* - t_0}{N} \\
\end{aligned}
|
where N is the number of intervals.
Numerical Integration
How to approximate the definite integral
\displaystyle \int_a^b f(x)\,dx via finite sums which approximates the area under the curve ? Common techniques: Riemann sums, trapezoid rules and Simpson's rule.
Left Riemann Sum
|
\begin{aligned}
\int_a^b f(x)\,dx \approx \sum_{n=0}^{N-1} f_n \cdot (\Delta x)_n = \sum_{n=0}^{N-1} f_n \cdot (x_{n+1} - x_n) \\
\end{aligned}
|
Right Riemann Sum
|
\begin{aligned}
\int_a^b f(x)\,dx \approx \sum_{n=1}^{N} f_n \cdot (\triangledown x)_n = \sum_{n=1}^{N} f_n \cdot (x_n - x_{n-1}) \\
\end{aligned}
|
Trapezoid Rule
An improvement over the left and right Riemann sums by averaging them.
|
\begin{aligned}
\int_a^b f(x)\,dx \approx \sum_{n=0}^{N-1} \frac{1}{2} (f_n + f_{n+1}) \cdot (\Delta x)_n = \sum_{n=0}^{N-1} \frac{1}{2} (f_n + f_{n+1}) \cdot (x_{n+1} - x_n) \\
\end{aligned}
|
If sample points are evenly spaced:
|
\begin{aligned}
\int_a^b f(x)\,dx \approx h \, \bigg(\frac{1}{2}(f_0 + f_N) + \sum_{n=1}^{N-1} f_n \bigg) \\
\end{aligned}
|
where
\displaystyle h = \frac{b-a}{N}
# posted by rot13(Unafba Pune) @ 5:18 PM
