Simplest Ordinary Differential Equation:
  |
\[
\begin{aligned}
\frac{dx}{dt} = ax \text{ , then } x &= Ce^{at}
\end{aligned}
\] |
Linear 1st order differential equation:
  |
\[
\begin{aligned}
\frac{dx}{dt} = A(t)x + B(t)
\end{aligned}
\] |
Standard form:
  |
\[
\begin{aligned}
\frac{dx}{dt} - Ax = B
\end{aligned}
\] |
Integrating factor:
Used for solving linear 1st order differential equations via the product rule to factor the sum of two derivatives into the derivative of a product.
  |
\[
\begin{aligned}
I &= e^{\int{-A}} \\
\text{i.e. } I &= e^{\int{-A(t)dt}}
\end{aligned}
\] |
such that:
  |
\[
\begin{aligned}
I\frac{dx}{dt} - IAx &= IB = \frac{d}{dt}Ix \\
\end{aligned}
\] |
Solution:
  |
\[
\begin{aligned}
x &= e^{\int{A}} \cdot \int{B e^{\int{-A}}} \\
\text{i.e. } x &= e^{\int{A(t)dt}} \cdot \int{B(t) e^{\int{-A(t)dt}}} \\
\end{aligned}
\] |
Equilibrium of \(\displaystyle \frac{dx}{dt} = f(x)\)
are simply the roots of \(f(x)\). Note if \(f'(x) < 0\), the equilibrium is stable. If \(f'(x) > 0\), the equilibrium is unstable.
Partial Fractions
  |
\[
\begin{aligned}
\frac{P(x)}{Q(x)} = \frac{A_1}{x-r_1} + \frac{A_2}{x-r_2} + \cdots + \frac{A_n}{x-r_n}
\end{aligned}
\] |
Fundamental Theorem of Integral Calculus
  |
\[
\begin{aligned}
\frac{d}{dx} \int_{t=a}^x f(t)dt = f(x)
\end{aligned}
\] |
p-integral
\( \displaystyle \int \frac{1}{x^p} dx = \int x^{-p} dx \)
Note
\(\displaystyle \int_1^\infty x^{-p}dx \)
diverges if \(p \le 1\) and converges otherwise; whereas
\(\displaystyle \int_0^1 x^{-p}dx \)
diverges if \(p \ge 1\) and converges otherwise.
For more info, check out the PennCalcWiki.
# posted by rot13(Unafba Pune) @ 6:08 PM