Wednesday, April 17, 2013
Finding πr via integral
In general, the length of a differentiable function can be computed using the integral:
∫ba√1+f′(x)2dx |
x2+y2=r2 |
∫r−r√1+x2r2−x2dx=r∫π/2−π/2cosθ√1+r2sin2θr2−r2sin2θdθ=r∫π/2−π/2cosθsecθdθ=πr |
In general, the length of a differentiable function can be computed using the integral:
∫ba√1+f′(x)2dx |
x2+y2=r2 |
∫r−r√1+x2r2−x2dx=r∫π/2−π/2cosθ√1+r2sin2θr2−r2sin2θdθ=r∫π/2−π/2cosθsecθdθ=πr |