Google
 
Web unafbapune.blogspot.com

Sunday, May 26, 2013

 

Some useful Talyor series

 

For all \(x\):

\[ \begin{aligned} e^x &= \sum_{k=0}^\infty \frac{x^k}{k!} \\ \cos x &= \sum_{k=0}^\infty (-1)^k \frac{x^{2k}}{(2k)!} \\ \sin x &= \sum_{k=0}^\infty (-1)^k \frac{x^{2k+1}}{(2k+1)!} \\ \cosh x &= \sum_{k=0}^\infty \frac{x^{2k}}{(2k)!} \\ \sinh x &= \sum_{k=0}^\infty \frac{x^{2k+1}}{(2k+1)!} \\ \end{aligned} \]
 

For \(\lvert x \rvert < 1\):

\[ \begin{aligned} \frac{1}{1 - x} &= \sum_{k=0}^\infty x^k \\ \ln(1+x) &= \sum_{k=1}^\infty (-1)^{k+1} \frac{x^k}{k} \\ \arctan(x) &= \sum_{k=0}^\infty (-1)^k \frac{x^{2k+1}}{2k+1} \\ (1 + x)^\alpha &= \sum_{k=0}^\infty {\alpha \choose k} x^k \\ \end{aligned} \]

Hyperbolic trigonometric functions

  \[ \begin{aligned} \sinh(x) &= \frac{e^x - e^{-x}}{2} \\ \cosh(x) &= \frac{e^x + e^{-x}}{2} \\ \tanh(x) &= \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{\sinh(x)}{\cosh(x)} \\ \end{aligned} \]  

Comments: Post a Comment

<< Home

This page is powered by Blogger. Isn't yours?