Processing math: 30%
Google
 
Web unafbapune.blogspot.com

Sunday, May 26, 2013

 

Some useful Talyor series

 

For all x:

ex=k=0xkk!cosx=k=0(1)kx2k(2k)!sinx=k=0(1)kx2k+1(2k+1)!coshx=k=0x2k(2k)!sinhx=k=0x2k+1(2k+1)!
 

For |x|<1:

\begin{aligned} \frac{1}{1 - x} &= \sum_{k=0}^\infty x^k \\ \ln(1+x) &= \sum_{k=1}^\infty (-1)^{k+1} \frac{x^k}{k} \\ \arctan(x) &= \sum_{k=0}^\infty (-1)^k \frac{x^{2k+1}}{2k+1} \\ (1 + x)^\alpha &= \sum_{k=0}^\infty {\alpha \choose k} x^k \\ \end{aligned}

Hyperbolic trigonometric functions

  \begin{aligned} \sinh(x) &= \frac{e^x - e^{-x}}{2} \\ \cosh(x) &= \frac{e^x + e^{-x}}{2} \\ \tanh(x) &= \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{\sinh(x)}{\cosh(x)} \\ \end{aligned}  

Comments: Post a Comment

<< Home

This page is powered by Blogger. Isn't yours?