Google
 
Web unafbapune.blogspot.com

Tuesday, June 04, 2013

 

Taylor series worth memorizing

About \(x = 0\):

  \[ \begin{aligned} \frac{1}{1-x} &= 1 + x + x^2 + \cdots \\ e^x &= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \\ \ln(1+x) &= x - \frac{x^2}{2} + \frac{x^3}{3} + \cdots \\ \cos x &= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots \\ \sin x &= x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots \\ \arctan x &= x - \frac{x^3}{3} + \frac{x^5}{5} + \cdots \\ \end{aligned} \]

About \(x = a\):

  \[ \begin{aligned} f(x) = f(a) + f'(a) (x-a) + f''(a) \frac{(x-a)^2}{2!} + f'''(a) \frac{(x-a)^3}{3!} + \cdots \end{aligned} \]

Let \(h = x - a\):

  \[ \begin{aligned} f(a + h) = f(a) + f'(a) h + f''(a) \frac{h^2}{2!} + f'''(a) \frac{h^3}{3!} + \cdots \end{aligned} \]

Comments: Post a Comment

<< Home

This page is powered by Blogger. Isn't yours?