Saturday, April 26, 2014
Poisson Process
As discretization of Bernoulli Process
\(\quad\)Prob. of \(k\) arrivals in interval duration of \(\tau\). Note \(N_\tau \approx \) Binomial(\(n, p\)).
  | \[ \begin{aligned} \mathbb{P}(N_\tau = k) &= \mathbb{P}(k,\tau) & \text{where } \displaystyle\sum_{k=0}^\infty\mathbb{P}(k,\tau) = 1 \\ &= \frac{(np)^k}{k!} e^{-\displaystyle np} \\ &= \frac{(\displaystyle\color{blue}{\frac{\tau}{\delta}}\cdot\color{red}{\lambda\delta})^k}{k!} e^{-\displaystyle\color{blue}{\frac{\tau}{\delta}}(\color{red}{\lambda\delta)}} & \text{where }n = \displaystyle\color{blue}{\frac{\tau}{\delta}}\text{ and }p = \color{red}{\lambda \delta} + O(\delta^2) \\ \mathbb{P}(k, \tau) &= \frac{(\lambda\tau)^k}{k!} e^{-\lambda\tau} & \text{which is the Poisson PMF with parameter } (\lambda, \tau)\\ \end{aligned} \] |
Small interval probabilities
  | \[ \begin{aligned} \mathbb{P}(k,\delta) \approx \begin{cases}1 - \lambda\delta & k=0 \\ \color{red}{\lambda\delta} & k = 1 \\ 0 & k > 1 \end{cases} \\ \end{aligned} \] |
Time \(T_1\) until the \(1^{st}\) arrival
  | \[ \begin{aligned} \mathbb{P}(T_1 \le t) &= 1 - \mathbb{P}(T_1 > t) = 1 - \mathbb{P}(0, t) = 1 - e^{-\lambda t} \\ f_{T_1}(t) &= \frac{d}{dt} \mathbb{P}(T_1 \le t) = \lambda e^{-\lambda t} = \text{Exponential}(\lambda) \end{aligned} \] |
Memorylessness: \(f_{T_1}(t' - t\,|\, t' > t) =\) Exponential(\(\lambda\)).
Time \(Y_k\) of the \(k^{th}\) arrival
  | \[ \begin{aligned} \mathbb{P}(Y_k \le y) &= \sum_{n=k}^\infty \mathbb{P}(n, y) & \text{CDF argument} \\ f_{Y_k}(y) \delta &\approx \mathbb{P}(y \le Y_k \le y + \delta) = \mathbb{P}(k-1, y) \mathbb{P}(1, \delta) = \mathbb{P}(k-1, y) \cdot \color{red}{\lambda\delta} & \text{more intuitive argument}\\ \therefore f_{Y_k}(y) &\approx \mathbb{P}(k-1, y) \cdot \lambda = \frac{\lambda^k y^{k-1} e^{-\lambda y}}{(k-1)!} \qquad \text{for }y \ge 0 & \color{blue}{\text{Erlang distribution }} \text{of order } k \\ \end{aligned} \] |
  | \[ \begin{aligned} Y_k &= T_1 + \cdots + T_k & \text{sum of i.i.d. exponentials} \\ \mathbb{E}[Y_k] &= \frac{k}{\lambda} \qquad var(Y_k) = \frac{k}{\lambda^2} \\ \end{aligned} \] |
Sum of independent Poisson r.v's with means/parameters \(\mu\) and \(\nu\)
\(\quad\)Poisson(\(\mu\)) + Poisson(\(\nu\)) = Poisson(\(\mu + \nu) \qquad\) with mean/parameter \(\mu + \nu\)
In general, the sum of two independent Poisson random variables is also a Poisson random variable as if the two given r.v.'s are numbers of arrivals in disjoint time intervals. This is a special property similar to that of Normal r.v.'s, and most other distributions do not have.
Splitting a Poisson process
Splitting a Bernoulli process into two would result in two Bernoulli processes that are dependent, since the arrival in a given time slot of one process would imply the non-arrival of the other process in the same time slot. Similarly, splitting a Poisson process into two would also result in two Poisson processes. Surprisingly, however, they are independent, as time is continuous.
Source: MITx 6.041x, Lecture 22, 23.