The first three determinants of a 1,3,1 matrix:
  |
\[ S_1 =
\begin{vmatrix}
3
\end{vmatrix}
\] |   |
\[ S_2 =
\begin{vmatrix}
3 & 1 \\ 1 & 3
\end{vmatrix}
\] |   |
\[ S_3 =
\begin{vmatrix}
3 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 3
\end{vmatrix}
\] |
Show that \(S_n\) is the Fibonacci number \(F_{2n+2}\) by proving \(F_{2n+2} = 3F_{2n} - F_{2n-2}\). Keep using Fibonacci's rule \(F_k = F_{k-1} + F_{k-2}\) starting with \(k = 2n + 2\).
Attempt:
First, we can see via cofactors that
  |
\[
\begin{aligned}
S_1 &= 3 = F_4 \\
S_2 &= 9 - 1 = 8 = F_6 \\
S_3 &= 3S_2 - \begin{vmatrix} 1 & 1 \\ 0 & 3 \end{vmatrix} = 3S_2 - S_1
\end{aligned}
\] |
In general, we can see that
  |
\[
\begin{aligned}
S_n = 3S_{n-1} - S_{n-2}
\end{aligned}
\] |
Next, setting \(k = 2n + 2\),
  |
\[
\begin{aligned}
F_{2n+2} &= F_{2n+1} + F_{2n} = (F_{2n} + F_{2n-1}) + F_{2n} \\
&= (3F_{2n} - F_{2n}) + F_{2n-1} \\
&= (3F_{2n} - F_{2n-1} - F_{2n-2}) + F_{2n-1} \\
\therefore F_{2n+2} &= 3F_{2n} - F_{2n-2} \\
\end{aligned}
\] |
Now, if \(S_n = F_{2n+2}\), then \(S_{n-1} = F_{2(n-1)+2} = F_{2n}\) and similarly \(S_{n-2} = F_{2n-2} \). But as demonstrated above this turns out to be the case for \(S_1 = F_4\) and \(S_2 = F_6\). Therefore, \(S_n\) is indeed the Fibonnaci number \(F_{2n+2}\). Interestingly, \(S_n\) is a sequence that produces every second Fibonnaci number !
# posted by rot13(Unafba Pune) @ 9:10 PM