Starting from:
  |
\[
\begin{aligned}
y^2 + x^2 &= r^2 \\
y &= \sqrt{r^2 - x^2} \\
\end{aligned}
\] |
The area of the circle is therefore:
  |
\[
\begin{aligned}
\int_{-r}^{r} 2 \sqrt{r^2 - x^2} \, dx \\
\end{aligned}
\] |
Let \(\displaystyle \, x = r\sin \theta\), so \(dx = r \cdot \cos{\theta} \, d\theta\):
  |
\[
\begin{aligned}
\int_{-r}^{r} 2 \sqrt{r^2 - x^2} \, dx &= \int_{-\pi/2}^{\pi/2} 2 r \cdot \cos{\theta} \sqrt{r^2 - r^2 \sin^2 \theta} \, d\theta \\
&= 2 r^2 \int_{-\pi/2}^{\pi/2} \cos^2{\theta} \, d\theta \\
&= 2 r^2 \int_{-\pi/2}^{\pi/2} \frac{1 + \cos 2{\theta}}{2} \, d\theta \\
&= r^2 \int_{-\pi/2}^{\pi/2} (1 + \cos 2{\theta}) \, d\theta \\
\end{aligned}
\] |
Let \(\displaystyle \, u = 2 \theta\), so \(du = 2 \, d\theta\):
  |
\[
\begin{aligned}
r^2 \int_{-\pi/2}^{\pi/2} (1 + \cos 2{\theta}) \, d\theta &= \frac{r^2}{2} \int_{-\pi}^{\pi} (1 + \cos{u}) \, du \\
&= \frac{r^2}{2} (u + \sin u) \, \biggr|_{-\pi}^{\pi} \\
&= \pi \, r^2 \\
\end{aligned}
\] |
\(\Box\)
# posted by rot13(Unafba Pune) @ 4:47 PM