Solve
  |
\[
\begin{aligned}
C_N &= N + 1 + \frac{2}{N}\sum_{1 \le k \le N} C_{k-1} \\
\end{aligned}
\] |
  |
\[
\begin{aligned}
N C_N &= N(N + 1) + 2 \sum_{1 \le k \le N} C_{k-1} & \text{multiply by } N\\
\sum_{N \ge 1} N C_N z^N &= \sum_{N \ge 1} N(N + 1) z^N + 2 \sum_{N \ge 1} \sum_{1 \le k \le N} C_{k-1} z^N & \text{multiply by } z^N \text{ and sum over all N} \\
\end{aligned}
\] |
Let \(\displaystyle C(z) = \sum_{N \ge 0} C_N z^N\). So,
  |
\[
\begin{aligned}
C'(z) &= \sum_{N \ge 1} N C_N z^{N-1} \\
\color{blue}{z C'(z)} &\color{blue}{= \sum_{N \ge 1} N C_N z^N} \\
\sum_{N \ge 1} N(N + 1) z^N &= \sum_{N \ge 2} (N - 1) N z^{N-1} & \text{re-index} \\
&= \frac{1}{z} \sum_{N \ge 2} (N - 1) N z^N \\
&= \frac{2}{z} \sum_{N \ge 2} \frac{N(N - 1)}{2} z^N \\
&= \frac{2}{z} \sum_{N \ge 2} {N \choose 2} z^N \\
&= \frac{2}{z} \cdot \frac{z^2}{(1-z)^3} & \text{corresponding OGF} \\
\color{blue}{\sum_{N \ge 1} N(N + 1) z^N} &\color{blue}{= \frac{2z}{(1-z)^3}} \\
2 \sum_{N \ge 1} \sum_{1 \le k \le N} C_{k-1} z^N &= 2z \sum_{N \ge 1} \sum_{1 \le k \le N} C_{k-1} z^{N-1} \\
&= 2z \sum_{N \ge 0} \sum_{1 \le k \le N+1} C_{k-1} z^N & \text{re-index } N \\
&= 2z \sum_{N \ge 0} \sum_{0 \le k \le N} C_k z^N & \text{re-index } k \\
\color{blue}{2 \sum_{N \ge 1} \sum_{1 \le k \le N} C_{k-1} z^N} &\color{blue}{= 2z \frac{C(z)}{1-z}} & \text{convolve simple OGF} \\
\end{aligned}
\] |
Recall
  |
\[
\begin{aligned}
\sum_{N \ge 1} N C_N z^N &= \sum_{N \ge 1} N(N + 1) z^N + 2 \sum_{N \ge 1} \sum_{1 \le k \le N} C_{k-1} z^N \\
z C'(z) &= \frac{2z}{(1-z)^3} + 2z \frac{C(z)}{1-z} \\
C'(z) &= \frac{2}{(1-z)^3} + 2 \frac{C(z)}{1-z} \\
\end{aligned}
\] |
But this is a
linear 1st order differential equation, which can be readily solved! In general, if
  |
\[
\begin{aligned}
x'(t) - A x(t) = B(t) \qquad &\text{standar form} \\
\end{aligned}
\] |
then
  |
\[
\begin{aligned}
x(t) &= e^{\int A} \cdot \int B e^{\int -A} & \text{see PennCalc wiki} \\
\end{aligned}
\] |
Now
  |
\[
\begin{aligned}
C'(z) - 2 \frac{C(z)}{1-z} &= \frac{2}{(1-z)^3} &\text{rewrite into standard form} \\
A &= \frac{2}{1-z} \\
B &= \frac{2}{(1-z)^3} \\
e^{\int A} &= e^{\int\frac{2}{1-z}} = e^{-2\ln(1-z)} = \frac{1}{(1-z)^2} \\
e^{\int - A} &= (1-z)^2 \\
C(z) &= e^{\int A} \cdot \int B e^{-\int A} = \frac{1}{(1-z)^2} \int \frac{2}{(1-z)^3} (1-z)^2 \\
&= \frac{1}{(1-z)^2} \int \frac{2}{(1-z)} \\
&= \frac{1}{(1-z)^2} \ln\frac{1}{(1-z)^2} \\
C(z) &= \frac{2}{(1-z)^2} \ln\frac{1}{(1-z)} \\
\end{aligned}
\] |
But we saw
earlier
  |
\[
\begin{aligned}
\text{[}z^N]\frac{1}{(1-z)^2} \ln\frac{1}{(1-z)} &= (N+1)(H_{N+1} - 1) \\
[z^N]C(z) &= [z^N]\frac{2}{(1-z)^2} \ln\frac{1}{(1-z)} = 2 (N+1)(H_{N+1} - 1) \\
\therefore C_N &= 2 (N+1)(H_{N+1} - 1) \\
\end{aligned}
\] |
\(\Box\)
Source: Analysis of Algorithm
# posted by rot13(Unafba Pune) @ 8:23 PM