Simplify
  |
\[
\begin{aligned}
f_n &= \sum_k {n \choose k} \frac{f_k}{2^k} \\
\end{aligned}
\] |
This example showcases the power of EGF,
Exponential Generating Functions.
  |
\[
\begin{aligned}
f(z) &= \sum_{n \ge 0} \sum_k {n \choose k} \frac{f_k}{2^k} \frac{z^n}{n!} & \text{multiply by } \frac{z_n}{n!} \text{ and sum over all }n \\
&= \sum_{k \ge 0} \sum_{n \ge k} {n \choose k} \frac{f_k}{2^k} \frac{z^n}{n!} & \text{reorder} \\
&= \sum_{k \ge 0} \sum_{n \ge 0} {n+k \choose k} \frac{f_k}{2^k} \frac{z^{n+k}}{(n+k)!} & \text{re-index }n \text{ to } n+k \\
&= \sum_{k \ge 0} \sum_{n \ge 0} \frac{f_k}{2^k} \frac{z^{n+k}}{n! k!} = \sum_{k \ge 0} \sum_{n \ge 0} f_k \frac{(z/2)^k}{k!} \frac{z^{n}}{n!} \\
&= \big(\sum_{k \ge 0} f_k \frac{(z/2)^k}{k!}\big) \big(\sum_{n \ge 0} \frac{z^{n}}{n!}\big) & \text{distribute} \\
&= f(z/2) e^z & \text{!}\\
\end{aligned}
\] |
Why ? Observe
  |
\[
\begin{aligned}
\sum_{k \ge 0} f_k \frac{(z/2)^k}{k!} &= \sum_{n \ge 0} f_n \frac{(z/2)^n}{n!} \\
&= \sum_{n \ge 0} \big(\sum_k {n \choose k} \frac{f_k}{2^k}\big) \frac{(z/2)^n}{n!} \\
&= f(z/2) \\
\end{aligned}
\] |
Moving on,
  |
\[
\begin{aligned}
f(z) &= f(z/2) e^z \\
&= e^z e^{z/2} e^{z/4} \cdots = e^{z + z/2 + z/4 + \cdots} & \text{telescope} \\
&= e^{z \frac{1}{1-\frac{1}{2}}} & \text{geometric series} \\
&= e^{2z} \\
f(z) &= \sum_{n \ge 0} \frac{2^n z^n}{n!} & \text{Talyor series expansion} \\
[z^n]f(z) \equiv f_n &= 2^n \\
\end{aligned}
\] |
\(\Box\)
Source: Analysis of Algorithm
# posted by rot13(Unafba Pune) @ 11:14 AM