Tuesday, November 12, 2013
Log(z)
z=|z|⋅ei⋅Arg(z),in polar formLog(z)=ln|z|+i⋅Arg(z),the principal branch of logarithmlog(z)=ln|z|+i(Arg(z)+2kπ),where k∈Zlog(z)=ln|z|+i⋅arg(z),a multi-valued function |
z↦|z|,continuous in Cz↦ln|z|,continuous in C∖{0}z↦Arg(z),continuous in C∖(−∞,0] |
∴ |
Quiz: what is \displaystyle\text{Log}(-e^xi) ?
Answer:
Observe \displaystyle z = -e^xi \, lies on the imaginary axis and therefore \displaystyle\text{Arg}(z) = -\frac{\pi}{2}
\begin{aligned} -e^x i &= e^x(0 - i) = e^x e^{-\frac{\pi}{2}i} \\ \text{Log}(-e^xi) &= x -\frac{\pi}{2}i \\ \end{aligned} |
More at Analysis of a Complex Kind.