Tuesday, November 05, 2013
Cauchy-Riemann Equations
The Cauchy-Riemann Equations are useful for checking differentiability in the complex plane, and computing them.
Suppose
  | \[ \begin{aligned} f(z) = u(x,y) + i \cdot v(x,y) \end{aligned} \] |
- the partial derivatives \(u_x, u_y, v_x, v_y\) exist at \(z_0\),
- \(u_x = v_y\), and
- \(u_y = -v_x\).
  | \[ \begin{aligned} f'(z_0) &= f_x(z_0) = u_x(x_0,y_0) + iv_x(x_0,y_0) \\ &= -i \cdot f_y(z_0) = -i \cdot (u_y(x_0,y_0) + i \cdot v_y(x_0,y_0)) \\ \end{aligned} \] |
Conversely, suppose
  | \[ \begin{aligned} f = u + i \cdot v \end{aligned} \] |
More info at Analysis of a Complex Kind.