Friday, November 01, 2013
∀x.(∃y.p(x,y)⟹q(x))
It can be shown that if
∀x.(∃y.p(x,y)⟹q(x)) |
∀x.∀y.(p(x,y)⟹q(x)) |
Turns out it's due to the simple reason that
∀x.(∃y.p(x,y)⟹q(x)) |
∀x.(∃y.(p(x,y)⟹q(x))). |
∃y.p(x,y)⟹q(x) |
It can be shown that if
∀x.(∃y.p(x,y)⟹q(x)) |
∀x.∀y.(p(x,y)⟹q(x)) |
Turns out it's due to the simple reason that
∀x.(∃y.p(x,y)⟹q(x)) |
∀x.(∃y.(p(x,y)⟹q(x))). |
∃y.p(x,y)⟹q(x) |