Tuesday, October 29, 2013
\(\displaystyle \varphi(w) = w + \frac{1}{w} \)
Let
  | \[ \begin{aligned} \varphi(w) = w + \frac{1}{w} \end{aligned} \] |
  | \[ \begin{aligned} \varphi(w) : \{w : \lvert w \rvert > 1\} \rightarrow \mathbb{C} \,\backslash\, [-2,2] \end{aligned} \] |
If \(\lvert w \rvert \ge 2\), \(\varphi(w)\) obviously excludes the interval \([-2,2]\).
If \(w = 1\), \(\varphi(w) = 2\).
Or more generally, if \(\lvert w \rvert = 1\) or \(w = e^{i\theta}\),
  | \[ \begin{aligned} \varphi(w) &= e^{i\theta} + e^{-i\theta} \\ &= \cos{\theta} + i\sin{\theta} + \cos{\theta} - i\sin{\theta} \\ &= 2\cos{\theta} \\ \end{aligned} \] |
Observe that \(\displaystyle \left| \varphi(w) \right| \) is monotonic increasing, which means the interval \([-2,2]\) is clearly excluded from \(\displaystyle \varphi(w)\) as \(\left| w \right| > 1\).
More info at Analysis of a Complex Kind.