Google
 
Web unafbapune.blogspot.com

Wednesday, March 20, 2013

 

Sum and Difference Trig Identities

  \[ \begin{aligned} \sin(A+B) &= \sin A\cos B + \cos A\sin B \\ \sin(A-B) &= \sin A\cos B - \cos A\sin B \\ \cos(A+B) &= \cos A\cos B - \sin A\sin B \\ \cos(A-B) &= \cos A\cos B + \sin A\sin B \\ \tan(A+B) &= \frac{\tan A + \tan B}{1 - \tan A \tan B} \\ \tan(A-B) &= \frac{\tan A - \tan B}{1 + \tan A \tan B} \\ 1 + \tan^2 x &= \sec^2 x \\ \end{aligned} \]
Note for \(\sin(A+B)\) and \(\cos(A+B)\), Khan Academy has some nice proofs. Notice \(\cos -\theta = \cos \theta \) and \(\sin -\theta = - \sin \theta \). The other identities are not hard to verify.

Euler's Formula

On the other hand, you may never have to memorize these formulas. Here is why. By Euler's formula:
  \[ \begin{aligned} e^{i(x+y)} &= \cos(x+y) + i \sin(x+y) \\ &= e^{ix} e^{iy} = (\cos x + i \sin x) \cdot (\cos y + i \sin y) \\ &= (\cos x \cdot \cos y - \sin x \cdot \sin y) + i(\sin x \cdot \cos y + \cos x \cdot \sin y) \\ \end{aligned} \]
and therefore
  \[ \begin{aligned} \cos(x+y) &= \cos x \cdot \cos y - \sin x \cdot \sin y \\ \sin(x+y) &= \sin x \cdot \cos y + \cos x \cdot \sin y \\ \end{aligned} \]


Comments: Post a Comment

<< Home

This page is powered by Blogger. Isn't yours?