|
sin(A+B)=sinAcosB+cosAsinBsin(A−B)=sinAcosB−cosAsinBcos(A+B)=cosAcosB−sinAsinBcos(A−B)=cosAcosB+sinAsinBtan(A+B)=tanA+tanB1−tanAtanBtan(A−B)=tanA−tanB1+tanAtanB1+tan2x=sec2x |
Note for
sin(A+B) and
cos(A+B), Khan Academy has some nice proofs. Notice
cos−θ=cosθ and
sin−θ=−sinθ. The other identities are not hard to verify.
Euler's Formula
On the other hand, you may never have to memorize these formulas. Here is why. By Euler's formula:
|
ei(x+y)=cos(x+y)+isin(x+y)=eixeiy=(cosx+isinx)⋅(cosy+isiny)=(cosx⋅cosy−sinx⋅siny)+i(sinx⋅cosy+cosx⋅siny) |
and therefore
|
cos(x+y)=cosx⋅cosy−sinx⋅sinysin(x+y)=sinx⋅cosy+cosx⋅siny |
# posted by rot13(Unafba Pune) @ 9:54 PM
