Sunday, January 06, 2013
Ex 2.23 φ(nm)
Show that
φ(nm)=gcdwhere \varphi(n) is equal to the number of integers between 0 and n-1 that are relatively prime to n. In short, \varphi(n) := \lvert \mathbb{Z_n^*} \rvert . \varphi is also known as the Euler's phi function.
== Attempt ==
In general, let \{n_i\}_{i=1}^k be a pairwise relatively prime family of positive integers, and let n := \prod_{i=1}^k n_i . Then
\varphi(n) = \prod_{i=1}^k \varphi(n_i)Furthermore, if n = p_1^{e_1} \dotsm p_r^{e_r} is the factorization of n into primes, then
\varphi(n) = \prod_{i=1}^r p_i^{e_i-1}(p_i - 1) = n \prod_{i=1}^r (1 - \frac{1}{p_i})Let d := \gcd(n,m) , n = n'd and m = m'd for some integers n', m'. Then
\varphi(nm) = \varphi(n'm'd^2) = \varphi(n'm') \cdot \varphi(d^2)as \gcd(n'm', d^2) = 1. Note that
\begin{aligned} \varphi(d) &= \prod_{i=1}^r p_i^{e_i-1} (p_i - 1) = d \prod_{i=1}^r (1 - \frac{1}{p_i}) \\ \varphi(d^2) &= \prod_{i=1}^r p_i^{2e_i-1} (p_i - 1) = d^2 \prod_{i=1}^r (1 - \frac{1}{p_i}) \\ \therefore \varphi(d^2) &= d \cdot \varphi(d) \\ \end{aligned} |
\varphi(nm) = \varphi(n'm') \cdot d \cdot \varphi(d) = d \cdot \varphi(n'm'd)as \gcd(n'm', d) = 1. But n'm'd = lcm(n, m). So
\varphi(nm) = d \cdot \varphi( lcm(n,m) ) = \gcd(n,m) \cdot \varphi( lcm(n,m) ) .\Box