Sunday, December 30, 2012
Ex 2.3 a \equiv b \pmod n
Let a,b,n \in \mathbb{Z} with n > 0. Show that a \equiv b \pmod n if and only if (a \bmod n) = (b \bmod n) .
== Attempt ==
Let r_a = a \bmod n, and r_b = b \bmod n , such that
\begin{aligned} a &= x_an + r_a \text{ for some unique } x_a,r_a \in \mathbb{Z} \text{ with } 0 \le r_a \lt n\\ b &= x_bn + r_b \text{ for some unique } x_b,r_b \in \mathbb{Z} \text{ with } 0 \le r_b \lt n \\ a - b &= n(x_a - x_b) + (r_a - r_b) \end{aligned} |
\implies
\mspace20pt Assume a \equiv b \pmod n, and note that 0 \le |r_a - r_b| \lt n. This means n \mid a - b, which only makes sense if:
\begin{aligned} r_a - r_b &= 0 \\ r_a &= r_b \\ \end{aligned} |
\impliedby
\mspace20pt The reverse is obvious. Assume (a \bmod n) = (b \bmod n) , r_a - r_b must be zero. So
\begin{aligned} a - b &= n(x_a - x_b) + (r_a - r_b) \\ a - b &= n(x_a - x_b) \end{aligned} |
\Box