Friday, January 04, 2013
Cancellation law for \(\mathbb{Z_n^*}\)
Consider any \(\alpha \in \mathbb{Z_n} \setminus \mathbb{Z_n^*}\) and \(\alpha \ne [0]\). Then we have \(\alpha = [a]\) with \(d := \gcd(a,n) > 1\). Setting \(\beta := [\frac{n}{d}]\), what is \(\alpha \beta\) ?
  | \[ \begin{aligned} \alpha & \equiv a \equiv a_1 d\pmod n \mspace20pt \text{ for some } a_1 \in \mathbb{Z_n^*}\\ \beta & \equiv \frac{n}{d} \pmod n \\ \alpha \beta & \equiv a_1 d \frac{n}{d} \equiv a_1 n \pmod n \\ \end{aligned} \] |