Friday, January 04, 2013
Cancellation law for Z∗n
Consider any α∈Zn∖Z∗n and α≠[0]. Then we have α=[a] with d:=gcd(a,n)>1. Setting β:=[nd], what is αβ ?
\begin{aligned} \alpha & \equiv a \equiv a_1 d\pmod n \mspace20pt \text{ for some } a_1 \in \mathbb{Z_n^*}\\ \beta & \equiv \frac{n}{d} \pmod n \\ \alpha \beta & \equiv a_1 d \frac{n}{d} \equiv a_1 n \pmod n \\ \end{aligned} |