Sunday, November 25, 2012
Ex 1.2 \( p \le n^\frac{1}{2} \)
Let n be a composite integer. Show that there exists a prime p dividing n, with \( p \le n^\frac{1}{2} \)
== Attempt ==
Given n is composite, there exists \(a, b \in \mathbb{N} \) such that:
  | \[ \begin{aligned} a \cdot b &= n \end{aligned} \] |
If a = b, \( a = b = \sqrt{n} \). So the prime p clearly exists.
If a < b,
  | \[ \begin{aligned} a = \frac{\sqrt{n}}{b} \cdot \sqrt{n} \end{aligned} \] |
\(\Box\)