Thursday, November 29, 2012
Ex 1.7 \(a = bq + r\)
Division with remainder property:
Let \(a,b \in \mathbb{Z}\) with \(b > 0\). Then there exist unique \(q,r \in \mathbb{Z}\) such that \(a = bq + r\) and \(0 \le r < b\).
Generalized division with remainder property:
Let \(a,b \in \mathbb{Z}\) with \(b > 0\), and let \(x \in \mathbb{R}\). Then there exist unique \(q, r \in \mathbb{Z}\) such that \(a = bq + r\) and \(r \in [x,\ x + b)\).
Show that the generalized division with remainder property also holds for the interval \((x,\ x + b]\). Does it hold in general for the intervals \([x,\ x + b]\) or \((x,\ x + b)\) ?
== Attempt ==
Consider the interval \((x,\ x + b]\), which contains exactly \(b\) integers, namely \( \lfloor x \rfloor + 1,\ ... , \lfloor x \rfloor + b \). Applying the division with remainder property with \(a - (\lfloor x \rfloor + 1)\) in place of \(a\):
  | \[ \begin{aligned} a - (\lfloor x \rfloor + 1) &= bq + r \\ a &= bq + r + \lfloor x \rfloor + 1 \\ \end{aligned} \] |
  | \[ \begin{aligned} r &\in \{0,\ ...,\ b - 1\} \\ r' &\in \{\lfloor x \rfloor + 1,\ ..., \lfloor x \rfloor + 1 + b - 1\} = \{\lfloor x \rfloor + 1,\ ..., \lfloor x \rfloor + b\} \\ r' &\in (x,\ x + b] \end{aligned} \] |
Consider the interval \([x,\ x + b]\), which contains integers:
  | \[ \begin{aligned} \{ \lceil x \rceil,\ ..., \lceil x \rceil + b - 1, \lfloor x \rfloor + b\} \end{aligned} \] |
Similarly, consider the interval \((x,\ x + b)\), which contains integers:
  | \[ \begin{aligned} \{ \lfloor x \rfloor + 1,\ ..., \lfloor x \rfloor + b - 1, \lceil x \rceil + b - 1 \} \end{aligned} \] |
\(\Box\)