Saturday, January 28, 2012
Proof Ex 4.33.1 General Union
Show that B ∩ (∪i∈IAi) = ∪i∈I(B ∩ Ai)
Proof:
⊆: Suppose x ∈ B ∩ (∪i∈IAi)
We will show that x ∈ ∪i∈I(B ∩ Ai)
From x ∈ B ∩ (∪i∈IAi), we get x ∈ B ∧ ∃i∈I(x ∈ Ai)
Which means ∃i∈I(x ∈ B ∧ x ∈ Ai)
Thus x ∈ ∪i∈I(B ∩ Ai)
⊇: Suppose x ∈ ∪i∈I(B ∩ Ai)
We will show that x ∈ B ∩ (∪i∈IAi)
From x ∈ ∪i∈I(B ∩ Ai), we get ∃i∈I(x ∈ B ∧ x ∈ Ai)
Which means x ∈ B ∧ ∃i∈I(x ∈ Ai)
Thus x ∈ B ∩ (∪i∈IAi)