Google
 
Web unafbapune.blogspot.com

Monday, January 09, 2012

 

Proof Ex 2.19 Equivalence and logical validity

Prove that

ϕ ≡ ψ iff ϕ ⇔ ψ

Proof:

The above statement can be expanded into a conjunction of two sub-statements

((ϕ ≡ ψ) ⇒ (ϕ ⇔ ψ)) ∧
((ϕ ⇔ ψ) ⇒ (ϕ ≡ ψ))

which can be further expanded into

((ϕ ≡ ψ) ⇒ ((ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ))) ∧
(((ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ)) ⇒ (ϕ ≡ ψ))

1) Given: ϕ ≡ ψ
To be proven: (ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ)

Suppose ϕ and ψ
It follows (ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ)

2) Given: (ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ)
To be proven: ϕ ≡ ψ

Suppose ϕ, then ψ
Suppose ¬ϕ, then ¬ψ

Thus ϕ ≡ ψ

Thus ϕ ≡ ψ iff ϕ ⇔ ψ

Comments: Post a Comment

<< Home

This page is powered by Blogger. Isn't yours?