Prove that
ϕ ≡ ψ iff ϕ ⇔ ψ
Proof:
The above statement can be expanded into a conjunction of two sub-statements
((ϕ ≡ ψ) ⇒ (ϕ ⇔ ψ)) ∧
((ϕ ⇔ ψ) ⇒ (ϕ ≡ ψ))
which can be further expanded into
((ϕ ≡ ψ) ⇒ ((ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ))) ∧
(((ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ)) ⇒ (ϕ ≡ ψ))
1) Given: ϕ ≡ ψ
To be proven: (ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ)
Suppose ϕ and ψ
It follows (ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ)
2) Given: (ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ)
To be proven: ϕ ≡ ψ
Suppose ϕ, then ψ
Suppose ¬ϕ, then ¬ψ
Thus ϕ ≡ ψ
Thus ϕ ≡ ψ iff ϕ ⇔ ψ
# posted by rot13(Unafba Pune) @ 8:27 AM