Is it true that for all sets A and B, Ƥ(A ∩ B) = Ƥ(A) ∩ Ƥ(B) ?
I think so, and here is the proof:
Let X ∈ Ƥ(A ∩ B)
We will show that X ∈ Ƥ(A) ∩ Ƥ(B)
From X ∈ Ƥ(A ∩ B), we get X ⊆ A ∩ B i.e., X ⊆ A and X ⊆ B
It follows that X ∈ Ƥ(A) and X ∈ Ƥ(B), i.e., X ∈ Ƥ(A) ∩ Ƥ(B)
Thus Ƥ(A ∩ B) ⇒ Ƥ(A) ∩ Ƥ(B)
Let Y ∈ Ƥ(A) ∩ Ƥ(B)
We will show that Y ∈ Ƥ(A ∩ B)
From Y ∈ Ƥ(A) ∩ Ƥ(B), we get Y ∈ Ƥ(A) and Y ∈ Ƥ(B), i.e., Y ⊆ A and Y ⊆ B
Let m ∈ Y. Then m ∈ A and m ∈ B, i.e., m ∈ A ∩ B
So Y ⊆ A ∩ B
It follows that Y ∈ Ƥ(A ∩ B)
Thus Ƥ(A) ∩ Ƥ(B) ⇒ Ƥ(A ∩ B)
# posted by rot13(Unafba Pune) @ 9:31 PM