Processing math: 9%
Google
 
Web unafbapune.blogspot.com

Sunday, December 22, 2013

 

Mergesort comparisions

Number of comparisons in mergesort:
  CN=CN/2+CN/2+N for N>1 with C1=0
How do we solve for CN ?
  CN+1=C(N+1)/2+C(N+1)/2+N+1=CN/2+CN/2+1+N+1!CN+1CN=CN/2+1CN/2+1
Now, let
  DN=CN+1CN=CN/2+1CN/2+1
Note
  \begin{aligned} D_1 &= C_{1+1} - C_1 = C_2 - C_1 = C_2 \\ C_2 &= C_{\lfloor 2/2 \rfloor} + C_{\lceil 2/2 \rceil} + 2 \\ &= C_1 + C_1 + 2 = 2 \\ \therefore D_1 &= 2 \\ D_N &= D_{\lfloor N/2 \rfloor} + 1 \\ &= D_1 + \lfloor \ln N \rfloor & \text{telescope} \\ \therefore D_N &= \lfloor \ln N \rfloor + 2 \\ \end{aligned}
Solving for C_N,
  \begin{aligned} C_{N+1} &= C_N + D_N & \text{rearranging terms} \\ &= C_N + \lfloor \ln N \rfloor + 2\\ &= C_1 + (\lfloor \ln 1 \rfloor + 2) + \cdots + (\lfloor \ln N \rfloor + 2) & \text{telescope} \\ &= 2N + C_1 + \sum_{k=1}^N \lfloor \ln k \rfloor \\ &= 2N + \sum_{k=1}^N \lfloor \ln k \rfloor \\ C_N &= 2(N-1) + \sum_{k=1}^{N-1} \lfloor \ln k \rfloor \\ &= (N-1) + \sum_{k=1}^{N-1} \big(\lfloor \ln k \rfloor + 1\big) \\ C_N &= N - 1 + \sum_{k=1}^{N-1} \big(\lfloor \ln k \rfloor + 1\big) \\ \end{aligned}
Note \lfloor \ln k \rfloor + 1 is the number if bits in the binary representation of k. Here is why.

Therefore B_N = B_{\lfloor N/2 \rfloor} + 1 is the number of bits in the binary representation of N, for N > 1 with B_1 = 1. Interestingly, this happens to be the same recurrence as binary search. Now
  \begin{aligned} B_N &= B_{\lfloor N/2 \rfloor} + 1 \\ &= B_1 + \lfloor \ln N \rfloor & \text{telescope} \\ \therefore B_N &= \lfloor \ln N \rfloor + 1 \\ \end{aligned}
Thus the theorem:
  \begin{aligned} C_N = N −1 + \text{ number of bits in binary representation of all numbers} < N. \end{aligned}
Let S_N be the number of bits in binary representation of all numbers < N.
  \begin{aligned} S_N &= \sum_{k=1}^{N-1} B_k \\ &= \sum_{k=1}^{N-1} \big(\lfloor \ln k \rfloor + 1\big) \\ \end{aligned}
When the binary representations of all numbers from 0 to N-1 is laid out, all the bits can be viewed as being contained in a rectangle of N by \ln \lfloor N \rfloor + 1. Subtracting all the leading zeros column by column, we get
  \begin{aligned} S_N &= N (\lfloor \ln N \rfloor + 1) - \sum_{k=0}^{\lfloor \ln N \rfloor} 2^k \\ &= N (\lfloor \ln N \rfloor + 1) - (2^{\lfloor \ln N \rfloor + 1} - 1) \\ &= N \lfloor \ln N \rfloor - 2^{\lfloor \ln N \rfloor + 1} + N + 1 \\ \end{aligned}
Now, recall
  \begin{aligned} C_N &= N − 1 + \text{ number of bits in binary representation of all numbers} < N \\ &= N - 1 + S_N \\ \therefore C_N &= N \lfloor \ln N \rfloor - 2^{\lfloor \ln N \rfloor + 1} + 2N & \text{!} \\ \end{aligned}
\Box

Source: Analysis of Algorithm


Comments: Post a Comment

<< Home

This page is powered by Blogger. Isn't yours?