Number of comparisons in mergesort:
|
CN=C⌊N/2⌋+C⌈N/2⌉+N for N>1 with C1=0 |
How do we solve for
CN ?
|
CN+1=C⌊(N+1)/2⌋+C⌈(N+1)/2⌉+N+1=C⌈N/2⌉+C⌊N/2⌋+1+N+1!CN+1−CN=C⌊N/2⌋+1−C⌊N/2⌋+1 |
Now, let
|
DN=CN+1−CN=C⌊N/2⌋+1−C⌊N/2⌋+1∴ |
Note
|
\begin{aligned}
D_1 &= C_{1+1} - C_1 = C_2 - C_1 = C_2 \\
C_2 &= C_{\lfloor 2/2 \rfloor} + C_{\lceil 2/2 \rceil} + 2 \\
&= C_1 + C_1 + 2 = 2 \\
\therefore D_1 &= 2 \\
D_N &= D_{\lfloor N/2 \rfloor} + 1 \\
&= D_1 + \lfloor \ln N \rfloor & \text{telescope} \\
\therefore D_N &= \lfloor \ln N \rfloor + 2 \\
\end{aligned}
|
Solving for
C_N,
|
\begin{aligned}
C_{N+1} &= C_N + D_N & \text{rearranging terms} \\
&= C_N + \lfloor \ln N \rfloor + 2\\
&= C_1 + (\lfloor \ln 1 \rfloor + 2) + \cdots + (\lfloor \ln N \rfloor + 2) & \text{telescope} \\
&= 2N + C_1 + \sum_{k=1}^N \lfloor \ln k \rfloor \\
&= 2N + \sum_{k=1}^N \lfloor \ln k \rfloor \\
C_N &= 2(N-1) + \sum_{k=1}^{N-1} \lfloor \ln k \rfloor \\
&= (N-1) + \sum_{k=1}^{N-1} \big(\lfloor \ln k \rfloor + 1\big) \\
C_N &= N - 1 + \sum_{k=1}^{N-1} \big(\lfloor \ln k \rfloor + 1\big) \\
\end{aligned}
|
Note
\lfloor \ln k \rfloor + 1 is the number if bits in the binary representation of k. Here is why.
- Let B_N be the number if bits in the binary representation of N.
- Obviously, B_1 = 1.
- removing the right most bit of N gives \lfloor N/2 \rfloor .
Therefore
B_N = B_{\lfloor N/2 \rfloor} + 1 is the number of bits in the binary representation of N, for
N > 1 with
B_1 = 1. Interestingly, this happens to be the same recurrence as binary search. Now
|
\begin{aligned}
B_N &= B_{\lfloor N/2 \rfloor} + 1 \\
&= B_1 + \lfloor \ln N \rfloor & \text{telescope} \\
\therefore B_N &= \lfloor \ln N \rfloor + 1 \\
\end{aligned}
|
Thus the theorem:
|
\begin{aligned}
C_N = N −1 + \text{ number of bits in binary representation of all numbers} < N.
\end{aligned}
|
Let
S_N be the number of bits in binary representation of all numbers
< N.
|
\begin{aligned}
S_N &= \sum_{k=1}^{N-1} B_k \\
&= \sum_{k=1}^{N-1} \big(\lfloor \ln k \rfloor + 1\big) \\
\end{aligned}
|
When the binary representations of all numbers from
0 to
N-1 is laid out, all the bits can be viewed as being contained in a rectangle of
N by
\ln \lfloor N \rfloor + 1. Subtracting all the leading zeros column by column, we get
|
\begin{aligned}
S_N &= N (\lfloor \ln N \rfloor + 1) - \sum_{k=0}^{\lfloor \ln N \rfloor} 2^k \\
&= N (\lfloor \ln N \rfloor + 1) - (2^{\lfloor \ln N \rfloor + 1} - 1) \\
&= N \lfloor \ln N \rfloor - 2^{\lfloor \ln N \rfloor + 1} + N + 1 \\
\end{aligned}
|
Now, recall
|
\begin{aligned}
C_N &= N − 1 + \text{ number of bits in binary representation of all numbers} < N \\
&= N - 1 + S_N \\
\therefore C_N &= N \lfloor \ln N \rfloor - 2^{\lfloor \ln N \rfloor + 1} + 2N & \text{!} \\
\end{aligned}
|
\Box
Source: Analysis of Algorithm
# posted by rot13(Unafba Pune) @ 1:45 PM
