Google
 
Web unafbapune.blogspot.com

Sunday, November 17, 2013

 

Induction

Linear Induction

  \[ \begin{aligned} &\phi[a] \\ &\forall \mu.(\phi[\mu] \implies \phi[s(\mu]) \\ \hline \\ &\forall \nu.\phi[\nu] \\ \end{aligned} \]
It's crucial that the signature consists of no other object constants or function constants !

Tree Induction

  \[ \begin{aligned} &\phi[a] \\ &\forall \mu.(\phi[\mu] \implies \phi[f(\mu]) \\ &\forall \mu.(\phi[\mu] \implies \phi[g(\mu]) \\ \hline \\ &\forall \nu.\phi[\nu] \\ \end{aligned} \]

Structural Induction

The most general form of induction !
  \[ \begin{aligned} &\phi[a] \\ &\phi[b] \\ &\forall \lambda. \forall \mu.((\phi[\lambda] \land \phi[\mu]) \implies \phi[c(\lambda, \mu)]) \\ \hline \\ &\forall \nu.\phi[\nu] \\ \end{aligned} \]

More at Introduction to Logic.


Comments: Post a Comment

<< Home

This page is powered by Blogger. Isn't yours?