Processing math: 78%
Google
 
Web unafbapune.blogspot.com

Wednesday, April 17, 2013

 

Finding πr via integral

In general, the length of a differentiable function can be computed using the integral:
  ba1+f(x)2dx
To find the length of a semi-circle, we can start with:
  x2+y2=r2
which leads to:
  rr1+x2r2x2dx=rπ/2π/2cosθ1+r2sin2θr2r2sin2θdθ=rπ/2π/2cosθsecθdθ=πr


Tuesday, April 16, 2013

 

Why πr2 ?

Starting from:
  y2+x2=r2y=r2x2
The area of the circle is therefore:
  rr2r2x2dx
Let x=rsinθ, so dx=rcosθdθ:
  rr2r2x2dx=π/2π/22rcosθr2r2sin2θdθ=2r2π/2π/2cos2θdθ=2r2π/2π/21+cos2θ2dθ=r2π/2π/2(1+cos2θ)dθ
Let u=2θ, so du=2dθ:
  r2π/2π/2(1+cos2θ)dθ=r22ππ(1+cosu)du=r22(u+sinu)|ππ=πr2


Sunday, April 14, 2013

 

Ax as linear combination of column vectors

Matrix

  A=[a11a12a1na21a22a2nam1am2amn]=[v1v2vn]

Vector

  x=[x1x2xn]

Product

  Ax=[x1v1+x2v2++xnvn]=[x1[a11a21am1]+x2[a12a22am2]++xn[a1na2namn]]
which is an m-dimensional vector.

Saturday, April 13, 2013

 

Discovering Maclaurin Series

By the fundamental theorem of calculus,
  f(n)=f(0)+n0f(nx)dx
If we integrate by parts once, with u=f(nx) and dv=dx, we can deduce:
  f(n)=f(0)+nf(0)+n0xf
What formula can we prove if we repeat this trick ?

Give it a try and it's not too hard to show that:
  \begin{aligned} \displaystyle f(n) = f(0) + n \cdot f'(0) + \frac{n^2f''(0)}{2!} + \frac{n^3f'''(0)}{3!} + \cdots + \frac{n^kf^{(k)}(0)}{k!} + \cdots \end{aligned}
Or,
  \begin{aligned} \displaystyle f(n) = \sum_{i=0}^\infty \frac{n^i f^{(i)}(0)}{i!} \end{aligned}
This turns out to be known as the Maclaurin Series, or a specific case of Taylor Series when it's centered at zero. Why would this be actually useful ? Well, this means we can approximate the value of any function as long as we can differentiate the function to any arbitrary level of depth, and if the function and all it's derivatives are defined at zero!

For example, as Professor Jim Fowler pointed out, "just the behavior of cosine near x=0 is enough to recover the value of cosine at any other point --- it's nuts".

Special thanks to Jim for his generous insight and humorous teaching of Calculus One at Coursera.

Note:
  \begin{aligned} \dfrac{d}{dx} f(n-x) &= - \, f'(n-x) \\ f(n-x) &= - \int f'(n-x) \, dx \\ \biggl[ \, {f(n-x)}\biggr]_n^0 &= - \int_n^0 f'(n-x) \, dx \\ f(n) - f(0) &= \int_0^n f'(n-x) \, dx \\ \therefore \; f(n)&= f(0) + \int_0^n f'(n-x) \, dx \end{aligned}


This page is powered by Blogger. Isn't yours?