Tuesday, September 04, 2018
Ex 4.1.1 Algebra by M.Artin
Let T be left multiplication by the matrix
⎡1 2 0 -1 5⎤ ⎢ ⎥ ⎢2 0 2 0 1⎥ ⎢ ⎥. ⎢1 1 -1 3 2⎥ ⎢ ⎥ ⎣0 3 -3 2 6⎦Compute ker T and im T explicitly by exhibiting bases for these spaces.
Answer
2 dimensional basis of ker T in \(F^5\), such as:⎡-7⎤ ⎡0 ⎤ ⎢ ⎥ ⎢ ⎥ ⎢5 ⎥ ⎢-5⎥ ⎢ ⎥ ⎢ ⎥ ⎢7 ⎥ , ⎢-1⎥ ⎢ ⎥ ⎢ ⎥ ⎢3 ⎥ ⎢0 ⎥ ⎢ ⎥ ⎢ ⎥ ⎣0 ⎦ ⎣2 ⎦3 dimensional basis of im T in \(F^4\), such as:
⎡1⎤ ⎡0⎤ ⎡0⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢0⎥ ⎢1⎥ ⎢0⎥ ⎢ ⎥ , ⎢ ⎥ , ⎢ ⎥ ⎢0⎥ ⎢0⎥ ⎢1⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣0⎦ ⎣0⎦ ⎣0⎦Note T:V \(\rightarrow\) W, where dim(V) = 5 and dim(W) = 4 in this case; and
dim(ker T) + dim(im T) = dim(V)in general per the Dimensional Formula (Ch 4.1).