Google
 
Web unafbapune.blogspot.com

Tuesday, September 04, 2018

 

Ex 4.1.1 Algebra by M.Artin

Let T be left multiplication by the matrix

  ⎡1  2  0   -1  5⎤
  ⎢               ⎥
  ⎢2  0  2   0   1⎥
  ⎢               ⎥.
  ⎢1  1  -1  3   2⎥
  ⎢               ⎥
  ⎣0  3  -3  2   6⎦
Compute ker T and im T explicitly by exhibiting bases for these spaces.

Answer

2 dimensional basis of ker T in \(F^5\), such as:

  ⎡-7⎤   ⎡0 ⎤
  ⎢  ⎥   ⎢  ⎥
  ⎢5 ⎥   ⎢-5⎥
  ⎢  ⎥   ⎢  ⎥
  ⎢7 ⎥ , ⎢-1⎥
  ⎢  ⎥   ⎢  ⎥
  ⎢3 ⎥   ⎢0 ⎥
  ⎢  ⎥   ⎢  ⎥
  ⎣0 ⎦   ⎣2 ⎦
3 dimensional basis of im T in \(F^4\), such as:
  ⎡1⎤   ⎡0⎤   ⎡0⎤
  ⎢ ⎥   ⎢ ⎥   ⎢ ⎥
  ⎢0⎥   ⎢1⎥   ⎢0⎥
  ⎢ ⎥ , ⎢ ⎥ , ⎢ ⎥
  ⎢0⎥   ⎢0⎥   ⎢1⎥
  ⎢ ⎥   ⎢ ⎥   ⎢ ⎥
  ⎣0⎦   ⎣0⎦   ⎣0⎦
Note T:V \(\rightarrow\) W, where dim(V) = 5 and dim(W) = 4 in this case; and
    dim(ker T) + dim(im T) = dim(V) 
in general per the Dimensional Formula (Ch 4.1).

Comments: Post a Comment

<< Home

This page is powered by Blogger. Isn't yours?