|
\[
\begin{aligned}
\dfrac{d}{dx} sin(x) &= cos(x) \\
\\
\dfrac{d}{dx} tan(x) &= sec^2(x) \\
\\
\dfrac{d}{dx} sec(x) &= sec(x) \cdot tan(x) \\
\end{aligned}
\] |
  |
\[
\begin{aligned}
\dfrac{d}{dx} cos(x) &= -sin(x) \\
\\
\dfrac{d}{dx} cot(x) &= -csc^2(x) \\
\\
\dfrac{d}{dx} csc(x) &= -csc(x) \cdot cot(x) \\
\end{aligned}
\] |
  |
\[
\begin{aligned}
\dfrac{d}{dx} sin^{-1}(x) &= \frac{1}{\sqrt{1 - x^2}} \\
\\
\dfrac{d}{dx} tan^{-1}(x) &= \frac{1}{1 + x^2} \\
\\
\dfrac{d}{dx} sec^{-1}(x) &= \frac{1}{x \cdot \sqrt{x^2 - 1}} \\
\end{aligned}
\] |
  |
\[
\begin{aligned}
\dfrac{d}{dx} cos^{-1}(x) &= \frac{-1}{\sqrt{1 - x^2}} \\
\\
\dfrac{d}{dx} cot^{-1}(x) &= \frac{-1}{1 + x^2} \\
\\
\dfrac{d}{dx} csc^{-1}(x) &= \frac{-1}{x \cdot \sqrt{x^2 - 1}} \\
\end{aligned}
\] |
Take the last trig function as an example. Let \(f(x) = csc^{-1}(x)\),
  |
\[\begin{aligned}
f(csc(x)) &= csc^{-1}(csc(x)) = x \\
f'(csc(x)) \cdot csc'(x) &= 1 \\
f'(csc(x)) &= \frac{1}{csc'(x)} \\
&= \frac{-1}{csc(x) \cdot cot(x)} \\
\end{aligned}
\] |
Since \(sin^2(x) + cos^2(x) = 1\), divide both sides by \(sin^2(x)\):
  |
\[
\begin{aligned}
1 + cot^2(x) &= csc^2(x) \\
cot(x) &= \sqrt{csc^2(x) - 1}\\
\end{aligned}
\] |
From above,
  |
\[
\begin{aligned}
f'(csc(x)) &= \frac{-1}{csc(x) \cdot cot(x)} \\
f'(csc(x)) &= \frac{-1}{csc(x) \cdot \sqrt{csc^2(x) - 1}} \\
f'(x) &= \frac{-1}{x \cdot \sqrt{x^2 - 1}} \\
\therefore \dfrac{d}{dx} csc^{-1}(x) &= \frac{-1}{x \cdot \sqrt{x^2 - 1}} \\
\end{aligned}
\] |
# posted by rot13(Unafba Pune) @ 10:48 PM