Tuesday, February 12, 2013
Line Rotation
Rotate a straight line by angle \(\theta\) from the origin with a starting coordinate:
- \((1,0) \rightarrow (\cos \theta, \sin \theta)\)
- \((0,1) \rightarrow (-\sin \theta, \cos \theta)\)
- \((x,0) \rightarrow (x\cos \theta, x\sin \theta)\)
- \((0,y) \rightarrow (-y\sin \theta, y\cos \theta)\)
- \((x,y) \rightarrow (x\cos \theta - y\sin \theta, x\sin \theta + y\cos \theta)\)
\( (\cos \alpha \cos \beta - \sin \alpha \sin \beta, \cos \alpha \sin \beta + \sin \alpha \cos \beta) \)On the other hand, if we rotate \((1,0)\) by \(\alpha + \beta\), we would end up at
\( (\cos(\alpha + \beta), \sin(\alpha + \beta)) \)This means:
  | \[\begin{aligned} \cos(\alpha + \beta) &= \cos \alpha \cos \beta - \sin \alpha \sin \beta \\ \sin(\alpha + \beta) &= \cos \alpha \sin \beta + \sin \alpha \cos \beta \end{aligned} \] |