Tuesday, February 12, 2013
Line Rotation
Rotate a straight line by angle θ from the origin with a starting coordinate:
- (1,0)→(cosθ,sinθ)
- (0,1)→(−sinθ,cosθ)
- (x,0)→(xcosθ,xsinθ)
- (0,y)→(−ysinθ,ycosθ)
- (x,y)→(xcosθ−ysinθ,xsinθ+ycosθ)
(cosαcosβ−sinαsinβ,cosαsinβ+sinαcosβ)On the other hand, if we rotate (1,0) by α+β, we would end up at
(cos(α+β),sin(α+β))This means:
cos(α+β)=cosαcosβ−sinαsinβsin(α+β)=cosαsinβ+sinαcosβ |