Google
 
Web unafbapune.blogspot.com

Tuesday, February 12, 2013

 

Line Rotation

Rotate a straight line by angle \(\theta\) from the origin with a starting coordinate:

  1. \((1,0) \rightarrow (\cos \theta, \sin \theta)\)
  2. \((0,1) \rightarrow (-\sin \theta, \cos \theta)\)
  3. \((x,0) \rightarrow (x\cos \theta, x\sin \theta)\)
  4. \((0,y) \rightarrow (-y\sin \theta, y\cos \theta)\)
  5. \((x,y) \rightarrow (x\cos \theta - y\sin \theta, x\sin \theta + y\cos \theta)\)
Therefore, if we rotate \((1,0)\) first by \(\alpha\) and then by \(\beta\), we would end up first at \((\cos \alpha, \sin \alpha)\), and then at
\( (\cos \alpha \cos \beta - \sin \alpha \sin \beta,   \cos \alpha \sin \beta + \sin \alpha \cos \beta) \)
On the other hand, if we rotate \((1,0)\) by \(\alpha + \beta\), we would end up at
\( (\cos(\alpha + \beta),   \sin(\alpha + \beta)) \)
This means:
  \[\begin{aligned} \cos(\alpha + \beta) &= \cos \alpha \cos \beta - \sin \alpha \sin \beta \\ \sin(\alpha + \beta) &= \cos \alpha \sin \beta + \sin \alpha \cos \beta \end{aligned} \]

Comments: Post a Comment

<< Home

This page is powered by Blogger. Isn't yours?