This is equivalent to show that:
  |
\[
\begin{aligned}
(\forall \epsilon > 0)(\exists n \in \mathbb{N})(\forall m \ge n)\big[ \space \big\vert \space (\frac{n}{n+1})^2 -1 \space \big\vert < \epsilon \space \big]
\end{aligned}
\] |
Given \(\epsilon, 2 > 0\), by the Archimedean property (which says that if \(x,y \in \mathbb{R}\) and \(x,y > 0\),there is an \(n \in \mathbb{N}\) such that \(n \cdot x > y\)), there is an \(n \in \mathbb{N}\) such that:
  |
\[
\begin{aligned}
(n+1) \cdot \epsilon &> 2 \\
\epsilon &> \frac{2}{n+1}
\end{aligned}
\] |
Consider for all \( m \ge n \):
  |
\[
\begin{aligned}
\big\vert \frac{m^2}{(m+1)^2} - 1 \big\vert
= 1 - \frac{m^2}{(m+1)^2}
= \frac{2m + 1}{(m+1)^2}
\le \frac{2n+1}{(n+1)^2} = \frac{2(n+1) - 1}{(n+1)^2}
< \frac{2}{n+1} < \epsilon
\end{aligned}
\] |
\(\Box\)
# posted by rot13(Unafba Pune) @ 5:01 PM