Sunday, November 25, 2012
Prove (nn+1)2→1 as n→∞
This is equivalent to show that:
(∀ϵ>0)(∃n∈N)(∀m≥n)[ | (nn+1)2−1 |<ϵ ] |
(n+1)⋅ϵ>2ϵ>2n+1 |
|m2(m+1)2−1|=1−m2(m+1)2=2m+1(m+1)2≤2n+1(n+1)2=2(n+1)−1(n+1)2<2n+1<ϵ |
This is equivalent to show that:
(∀ϵ>0)(∃n∈N)(∀m≥n)[ | (nn+1)2−1 |<ϵ ] |
(n+1)⋅ϵ>2ϵ>2n+1 |
|m2(m+1)2−1|=1−m2(m+1)2=2m+1(m+1)2≤2n+1(n+1)2=2(n+1)−1(n+1)2<2n+1<ϵ |