Sunday, October 21, 2012
Proof of perfect square
Prove or disprove the claim that for any positive integer m there is a positive integer n such that mn + 1 is a perfect square.
== Attempt ==
First, the claim can be expressed as:
  | \[ \forall{(m,n \in \mathbb{N})} \exists {(r \in \mathbb{Z})} [m \cdot n + 1 = r^2] \] |
  | \[ \begin{aligned} m \cdot n + 1 & = r^2 \\ m \cdot n & = r^2 - 1 \\ m \cdot n & = (r + 1)(r - 1) \\ n & = \frac{(r + 1)(r - 1)}{m} \\ \end{aligned} \] |
  | \[ \begin{aligned} \exists{(x \in \mathbb{N})} [(m \cdot x = r + 1) \lor (m \cdot x = r - 1)] \end{aligned} \] |
  | \[ \begin{aligned} \exists{(x \in \mathbb{N})} [(r = m \cdot x - 1) \lor (r = m \cdot x + 1)] \end{aligned} \] |
  | \[ \begin{aligned} r & = 1 \cdot 3 - 1 & = 2 \\ n & = \frac{(2 + 1)(2 - 1)}{1} & = 3 \\ m \cdot n + 1 & = 1 \cdot 3 + 1 & = 2^2 \end{aligned} \] |
  | \[ \begin{aligned} r = m \cdot x - 1 >= 2 \end{aligned} \] |
  | \[ \begin{aligned} x >= \frac{3}{m} \end{aligned} \] |
Comments:
<< Home
I believe the solution is easier... When m*n = (r-1)*(r+1), you can say: suppose m = r-1 and n = r+1. After a little high school mathematics you will have m*n = (m+1)^2 which is a perfect square
Hi Anonymous, if \(m=r-1\) and \(n=r+1\), then \(r=m+1\) and \(n=m+2\).
So \(mn = m(m+2) = m^2+2m = (m+1)^2-1\), not \((m+1)^2\).
What am I missing ?
Post a Comment
So \(mn = m(m+2) = m^2+2m = (m+1)^2-1\), not \((m+1)^2\).
What am I missing ?
<< Home