Given two vectors:
  |
\[ u =
\begin{vmatrix}
u1 \\
u2
\end{vmatrix}
\]
|
  |
\[ v =
\begin{vmatrix}
v1 \\
v2
\end{vmatrix}
\]
|
if we project a perpendicular line from (v1, v2) to (u1, u2), meeting at a point with length p from the origin, prove that:
  |
\[\begin{align*}
u \cdot v & = p \cdot ||u|| \\
\text{where } u \cdot v & = u_{1} v_{1} + u_{2} v_{2}
\text{ (i.e. the inner product)}
\end{align*}
\] |
== Solution ==
Let α and β be the respective angles of v and u from the x-axis:
  |
\[\begin{aligned}
p & = ||v|| \space cos (\alpha - \beta) \\
p & = ||v|| \space (cos \space \alpha \space cos \space \beta +
sin \space \alpha \space \sin \space \beta) \\
p \cdot ||u|| & = ||v|| \cdot ||u|| \space (cos \space \alpha \space cos \space \beta + sin \space \alpha \space \sin \space \beta) \\
p \cdot ||u|| & = ||v|| \space cos \space \alpha \cdot ||u|| \space cos \space \beta + ||v|| \space sin \space \alpha \cdot ||u|| \space \sin \space \beta \\
p \cdot ||u|| & = v_{1} u_{1} + v_{2} u_{2} \\
p \cdot ||u|| & = u \cdot v
\end{aligned}
\]
|
# posted by rot13(Unafba Pune) @ 12:26 AM