Processing math: 100%
Google
 
Web unafbapune.blogspot.com

Sunday, September 23, 2012

 

Vector Inner Product

Given two vectors:
  u=|u1u2|   v=|v1v2|
if we project a perpendicular line from (v1, v2) to (u1, u2), meeting at a point with length p from the origin, prove that:
  uv=p||u||where uv=u1v1+u2v2 (i.e. the inner product)





== Solution ==

Let α and β be the respective angles of v and u from the x-axis:
  p=||v|| cos(αβ)p=||v|| (cos α cos β+sin α sin β)p||u||=||v||||u|| (cos α cos β+sin α sin β)p||u||=||v|| cos α||u|| cos β+||v|| sin α||u|| sin βp||u||=v1u1+v2u2p||u||=uv


Comments: Post a Comment

<< Home

This page is powered by Blogger. Isn't yours?