Sunday, September 23, 2012
Vector Inner Product
Given two vectors:
u=|u1u2| | v=|v1v2| |
u⋅v=p⋅||u||where u⋅v=u1v1+u2v2 (i.e. the inner product) |
== Solution ==
Let α and β be the respective angles of v and u from the x-axis:
p=||v|| cos(α−β)p=||v|| (cos α cos β+sin α sin β)p⋅||u||=||v||⋅||u|| (cos α cos β+sin α sin β)p⋅||u||=||v|| cos α⋅||u|| cos β+||v|| sin α⋅||u|| sin βp⋅||u||=v1u1+v2u2p⋅||u||=u⋅v |