Factor the following matrix into PA = LU. Factor it also into A = L1P1U1 (hold the exchange of row 3 until 3 times row 1 is subtracted from row 2):
  |
\[ A =
\begin{vmatrix}
0 & 1 & 2 \\
0 & 3 & 8 \\
2 & 1 & 1 \\
\end{vmatrix}
\]
|
== Solution ==
To factor into PA = LU, observe that:
  |
\[
\begin{vmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
\end{vmatrix} \space A
=
\begin{vmatrix}
2 & 1 & 1 \\
0 & 1 & 2 \\
0 & 3 & 8 \\
\end{vmatrix} = L \space
\begin{vmatrix}
2 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 2 \\
\end{vmatrix}
\]
|
This means:
  |
\[
P =
\begin{vmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
\end{vmatrix}
\]
\[
L =
\begin{vmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 3 & 1 \\
\end{vmatrix}
\]
\[
U =
\begin{vmatrix}
2 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 2 \\
\end{vmatrix}
\]
|
To factor into
A = L1P1U1, observe that:
  |
\[
\begin{vmatrix}
0 & 1 & 2 \\
0 & 3 & 8 \\
2 & 1 & 1 \\
\end{vmatrix} \rightarrow
L_{1}
\begin{vmatrix}
0 & 1 & 2 \\
0 & 0 & 2 \\
2 & 1 & 1 \\
\end{vmatrix} = L_{1} P_{1} U_{1}
\]
|
which means:
  |
\[
L_{1} =
\begin{vmatrix}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 0 & 1 \\
\end{vmatrix}
\]
\[
U_{1} =
\begin{vmatrix}
2 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 2 \\
\end{vmatrix}
\]
\[
P_{1} =
\begin{vmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
\end{vmatrix}
\]
|
# posted by rot13(Unafba Pune) @ 7:40 PM