Hyperbolic sine and cosine
  |
\[
\begin{aligned}
\sinh x &= \frac{e^x - e^{-x}}{2} \\
\cosh x &= \frac{e^x + e^{-x}}{2} \\
d\frac{\sinh x}{dx} &= \cosh x \\
d\frac{\cosh x}{dx} &= \sinh x \\
1 + \sinh^2 x &= \cosh^2 x \\
\end{aligned}
\] |
Disc Area
3 ways to find the area of a disc:
  |
\[
\begin{aligned}
A &= \frac{1}{2}\int_0^{2\pi} r^2 \, d\theta \\
A &= \int_0^{R} 2\pi \, r \, dr \\
A &= 2\int_{-R}^{R} \sqrt{R^2 - x^2} dx \\
\end{aligned}
\] |
Polar area element
  |
\[
\begin{aligned}
dA &= \frac{1}{2}r^2\, d\theta = \frac{1}{2}(f(\theta))^2\, d\theta
\end{aligned}
\] |
Volumes of Revolution
Use cylindrical shells when the area element is parallel to the axis of rotation:
  |
\[
\begin{aligned}
dV &= 2 \, \pi \, r \, h(r) \, dr \\
\end{aligned}
\] |
Use washer when the area element is perpendicular to the axis of rotation:
  |
\[
\begin{aligned}
dV &= \pi \, R(t)^2 - \pi \, r(t)^2\, dt \\
\end{aligned}
\] |
Arc Length
  |
\[
\begin{aligned}
L &= \int dL \\
dL &= \sqrt{1 + (\frac{dy}{dx})^2} \, dx \\
\end{aligned}
\] |
Parametric Curves
  |
\[
\begin{aligned}
dL &= \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} \, dt
\end{aligned}
\] |
Surface area of revolution
  |
\[
\begin{aligned}
dS &= 2 \pi r \, dL \\
\end{aligned}
\] |
Revolving around the x-axis:
  |
\[
\begin{aligned}
dS = 2\pi \, f(x) \sqrt{1 + (\frac{dy}{dx})^2} \, dx \\
\end{aligned}
\] |
2 ways of revolving around the y-axis:
  |
\[
\begin{aligned}
dS &= 2\pi \, x \sqrt{1 + (\frac{dy}{dx})^2} \, dx \\
&= 2\pi \, f^{-1}(y) \sqrt{1 + (\frac{dx}{dy})^2} \, dy \\
\end{aligned}
\] |
Work
Work = Force x Distance.
Pull up a hanging rope
  |
\[
\begin{aligned}
dW &= \rho \, x \, dx \\
\end{aligned}
\] |
where \(x\) is measured from the top, and \(\rho\) is the weight density (or mass density multiplied by gravity.)
Spring
  |
\[
\begin{aligned}
dW &= F(x) \, dx \\
\end{aligned}
\] |
Elements
Mass of a rod
  |
\[
\begin{aligned}
dM &= \rho(x) \, dV = \rho(x) \, dx \\
\end{aligned}
\] |
Mass of a sphere
  |
\[
\begin{aligned}
dM &= \rho(r) \, dV = \rho(r) \, 4 \pi r^2 \, dr \\
\end{aligned}
\] |
Present Value
  |
\[
\begin{aligned}
P(t) &= P_0 e^{rt} \\
P_0 &= P(t) \, e^{-rt} \\
dI &= I(t) \, dt \\
dPV &= e^{-rt} \, dI = I(t) \, e^{-rt} \, dt \\
\end{aligned}
\] |
Average value of a function
  |
\[
\begin{aligned}
\overline{f} = \frac{\int_{x=a}^b f(x) \, dx}{\int_{x=a}^b dx}
\end{aligned}
\] |
Note the average value over a region is the integral of the function over the region divided by the volume of that region.
Centroids and Centers Of Mass
  |
\[
\begin{aligned}
Area = \int \int_R dx\,dy\\
\end{aligned}
\] |
Centroids
  |
\[
\begin{aligned}
\overline{x} = \frac{\int \int_R x\,dx\,dy}{\int \int_R dx\,dy}\\
\overline{y} = \frac{\int \int_R y\,dx\,dy}{\int \int_R dx\,dy}\\
\end{aligned}
\] |
Centroids using point mass
Given a complex region which consists of the union of simpler regions, there is a method for finding the centroid:
- Find the centroid of each simple region;
- Replace each region with a point mass at its centroid, where the mass is the area of the region;
- Find the centroid of these point masses by taking a weighted average of their x and y coordinates.
Center of mass
  |
\[
\begin{aligned}
\overline{x} = \frac{\int \int_R \rho(x,y)\, x\,dx\,dy}{\int \int_R \rho(x,y)\, dx\,dy}\\
\overline{y} = \frac{\int \int_R \rho(x,y)\, y\,dx\,dy}{\int \int_R \rho(x,y)\, dx\,dy}\\
\end{aligned}
\] |
Moments and Gyrations
  |
\[
\begin{aligned}
\text{Inertia} &= r^2 M \\
dI &= r^2 dM \\
\end{aligned}
\] |
Fair Probability
  |
\[
\begin{aligned}
P(D) &= \frac{\text{Volume of } D}{\text{Total volume of all outcomes}}\\
\end{aligned}
\] |
Probability density function (PDF)
Probability element:
  |
\[
\begin{aligned}
dP &= \rho(x) dx \\
\end{aligned}
\] |
2 properties of a PDF:
- \(\displaystyle \rho(x) > 0 \, \forall x \in D\)
- \(\displaystyle \int_D \rho(x) \, dx = 1\)
Expectation and Variance
Expectation - 1st moment:
  |
\[
\begin{aligned}
E &= \int_D x \, dP \\
&= \int_D x \, \rho(x) \, dx \\
\end{aligned}
\] |
Variance - 2nd moment:
  |
\[
\begin{aligned}
V &= \int_D (x - E)^2 \, dP \\
&= \int_D x^2 \, dP - E^2 \\
\end{aligned}
\] |
Interpreted as mass, expectation is the
centroid, variance the
moment of inertia about the centroid, and standard deviation the
radius of gyration from the centroid !
  |
\[
\begin{aligned}
E &= \frac{\int_D x \, dP}{\int_D \, dP} \,\, \Leftrightarrow \, \, \overline x = \frac{\int x \, dM}{\int \, dM} \\
V &= \int_D (x - E)^2 \, dP \,\, \Leftrightarrow \, \, I = \int r^2 \, dM \\
\sigma &= \sqrt{\frac{\int_D (x - E)^2 \, dP}{\int_D \, dP}} = \sqrt V \,\, \Leftrightarrow \, \, R_g = \sqrt{\frac{I}{M}} = \sqrt{\frac{\int r^2 \, dM}{\int \, dM}} \\
\end{aligned}
\] |
Simplest Ordinary Differential Equation:
  |
\[
\begin{aligned}
\frac{dx}{dt} = ax \text{ , then } x &= Ce^{at}
\end{aligned}
\] |
Linear 1st order differential equation:
  |
\[
\begin{aligned}
\frac{dx}{dt} = A(t)x + B(t)
\end{aligned}
\] |
Standard form:
  |
\[
\begin{aligned}
\frac{dx}{dt} - Ax = B
\end{aligned}
\] |
Integrating factor:
Used for solving linear 1st order differential equations via the product rule to factor the sum of two derivatives into the derivative of a product.
  |
\[
\begin{aligned}
I &= e^{\int{-A}} \\
\text{i.e. } I &= e^{\int{-A(t)dt}}
\end{aligned}
\] |
such that:
  |
\[
\begin{aligned}
I\frac{dx}{dt} - IAx &= IB = \frac{d}{dt}Ix \\
\end{aligned}
\] |
Solution:
  |
\[
\begin{aligned}
x &= e^{\int{A}} \cdot \int{B e^{\int{-A}}} \\
\text{i.e. } x &= e^{\int{A(t)dt}} \cdot \int{B(t) e^{\int{-A(t)dt}}} \\
\end{aligned}
\] |
Equilibrium of \(\displaystyle \frac{dx}{dt} = f(x)\)
are simply the roots of \(f(x)\). Note if \(f'(x) < 0\), the equilibrium is stable. If \(f'(x) > 0\), the equilibrium is unstable.
Partial Fractions
  |
\[
\begin{aligned}
\frac{P(x)}{Q(x)} = \frac{A_1}{x-r_1} + \frac{A_2}{x-r_2} + \cdots + \frac{A_n}{x-r_n}
\end{aligned}
\] |
Fundamental Theorem of Integral Calculus
  |
\[
\begin{aligned}
\frac{d}{dx} \int_{t=a}^x f(t)dt = f(x)
\end{aligned}
\] |
p-integral
\( \displaystyle \int \frac{1}{x^p} dx = \int x^{-p} dx \)
Note
\(\displaystyle \int_1^\infty x^{-p}dx \)
diverges if \(p \le 1\) and converges otherwise; whereas
\(\displaystyle \int_0^1 x^{-p}dx \)
diverges if \(p \ge 1\) and converges otherwise.
For more info, check out the PennCalcWiki.