Processing math: 10%
Google
 
Web unafbapune.blogspot.com

Sunday, May 26, 2013

 

Some useful Talyor series

 

For all x:

ex=k=0xkk!cosx=k=0(1)kx2k(2k)!sinx=k=0(1)kx2k+1(2k+1)!coshx=k=0x2k(2k)!sinhx=k=0x2k+1(2k+1)!
 

For |x|<1:

\begin{aligned} \frac{1}{1 - x} &= \sum_{k=0}^\infty x^k \\ \ln(1+x) &= \sum_{k=1}^\infty (-1)^{k+1} \frac{x^k}{k} \\ \arctan(x) &= \sum_{k=0}^\infty (-1)^k \frac{x^{2k+1}}{2k+1} \\ (1 + x)^\alpha &= \sum_{k=0}^\infty {\alpha \choose k} x^k \\ \end{aligned}

Hyperbolic trigonometric functions

  \begin{aligned} \sinh(x) &= \frac{e^x - e^{-x}}{2} \\ \cosh(x) &= \frac{e^x + e^{-x}}{2} \\ \tanh(x) &= \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{\sinh(x)}{\cosh(x)} \\ \end{aligned}  

Saturday, May 25, 2013

 

Taylor Series about x = 0

The Taylor series about x = 0 of any given function:
  \begin{aligned} \displaystyle f(x) = \sum_{k=0}^\infty f^{(k)}(0)\frac{x^k}{k!} \\ \end{aligned}
Some interesting observations:


 

e^x as long polynomial

It turns out e^{x} can be defined as a long polynomial:
  \begin{aligned} \displaystyle e^x = \sum_{k=0}^\infty \frac{x^k}{k!} \\ \end{aligned}
which has some nice properties.

For example, as a polynomial it's not hard to see that the derivative of e^x is equal to itself, and the integral of e^x is e^x + C.

Per Euler's formula,
  \begin{aligned} \displaystyle e^{ix} = \cos(x) + i \sin(x) \\ \end{aligned}
but treating e^{ix} as a long polynomial,
  \begin{aligned} \displaystyle e^{ix} &= 1 + ix + \frac{i^2x^2}{2!} + \frac{i^3x^3}{3!} + \frac{i^4x^4}{4!} + \frac{i^5x^5}{5!} + \frac{i^6x^6}{6!} + \cdots \\ \displaystyle &= 1 + ix - \frac{x^2}{2!} - \frac{ix^3}{3!} + \frac{x^4}{4!} + \frac{ix^5}{5!} - \frac{x^6}{6!} + \cdots \\ \displaystyle &= (1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots) + i(x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots) \\ \end{aligned}
Therefore,
  \begin{aligned} \displaystyle \cos x &= \sum_{k=0}^\infty (-1)^k\frac{x^{2k}}{(2k)!} \\ \displaystyle \sin x &= \sum_{k=0}^\infty (-1)^k\frac{x^{2k+1}}{(2k+1)!} \\ \end{aligned}
Treating these as long polynomials, it's rather easy to verify that the derivative of \cos x is - \sin x, and likewise the derivative of \sin x is \cos x.


This page is powered by Blogger. Isn't yours?