| For all x:
ex=∞∑k=0xkk!cosx=∞∑k=0(−1)kx2k(2k)!sinx=∞∑k=0(−1)kx2k+1(2k+1)!coshx=∞∑k=0x2k(2k)!sinhx=∞∑k=0x2k+1(2k+1)! |
|
For |x|<1:
\begin{aligned}
\frac{1}{1 - x} &= \sum_{k=0}^\infty x^k \\
\ln(1+x) &= \sum_{k=1}^\infty (-1)^{k+1} \frac{x^k}{k} \\
\arctan(x) &= \sum_{k=0}^\infty (-1)^k \frac{x^{2k+1}}{2k+1} \\
(1 + x)^\alpha &= \sum_{k=0}^\infty {\alpha \choose k} x^k \\
\end{aligned}
|
Hyperbolic trigonometric functions
|
\begin{aligned}
\sinh(x) &= \frac{e^x - e^{-x}}{2} \\
\cosh(x) &= \frac{e^x + e^{-x}}{2} \\
\tanh(x) &= \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{\sinh(x)}{\cosh(x)} \\
\end{aligned}
|
|
|
The Taylor series about x = 0 of any given function:
|
\begin{aligned}
\displaystyle f(x) = \sum_{k=0}^\infty f^{(k)}(0)\frac{x^k}{k!} \\
\end{aligned}
|
Some interesting observations:
- The long polynomial of \displaystyle e^x = \sum_{k=0}^\infty \frac{x^k}{k!} can easily be verified to be just the Taylor series about x = 0 of e^x
- The Taylor series about x = 0 of a polynomial is the polynomial per se
- Geometric series such as 1 + x + x^2 + x^3 + \cdots can easily be verified to be the Taylor series about x = 0 of \displaystyle \frac{1}{1-x}
It turns out e^{x} can be defined as a long polynomial:
|
\begin{aligned}
\displaystyle e^x = \sum_{k=0}^\infty \frac{x^k}{k!} \\
\end{aligned}
|
which has some nice properties.
For example, as a polynomial it's not hard to see that the derivative of e^x is equal to itself, and the integral of e^x is e^x + C.
Per Euler's formula,
|
\begin{aligned}
\displaystyle e^{ix} = \cos(x) + i \sin(x) \\
\end{aligned}
|
but treating
e^{ix} as a long polynomial,
|
\begin{aligned}
\displaystyle e^{ix} &= 1 + ix + \frac{i^2x^2}{2!} + \frac{i^3x^3}{3!} + \frac{i^4x^4}{4!} + \frac{i^5x^5}{5!} + \frac{i^6x^6}{6!} + \cdots \\
\displaystyle &= 1 + ix - \frac{x^2}{2!} - \frac{ix^3}{3!} + \frac{x^4}{4!} + \frac{ix^5}{5!} - \frac{x^6}{6!} + \cdots \\
\displaystyle &= (1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots) + i(x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots) \\
\end{aligned}
|
Therefore,
|
\begin{aligned}
\displaystyle \cos x &= \sum_{k=0}^\infty (-1)^k\frac{x^{2k}}{(2k)!} \\
\displaystyle \sin x &= \sum_{k=0}^\infty (-1)^k\frac{x^{2k+1}}{(2k+1)!} \\
\end{aligned}
|
Treating these as long polynomials, it's rather easy to verify that the derivative of
\cos x is
- \sin x, and likewise the derivative of
\sin x is
\cos x.