Google
 
Web unafbapune.blogspot.com

Sunday, March 31, 2013

 

Parametric Representation of Lines

Line in \(\mathbb{R}^2\):

\(y = mx + b \)
Line in \(\mathbb{R}^n\):
\(L = { \vec{x} + t \vec{v}   |   t \in \mathbb{R} } \)
Given two point vectors \(\vec{P_1}\) and \(\vec{P_2}\), what is the line that passes through them ?

Solution:

\( L = \vec{P_1} + t(\vec{P_1} - \vec{P_2})   |   t \in \mathbb{R} \)
or
\( L = \vec{P_2} + t(\vec{P_1} - \vec{P_2})   |   t \in \mathbb{R} \)
See video.

 

Vector dot and cross products

  1. \( \| \vec{x} \cdot \vec{y} \| \le \|\vec{x}\|\|\vec{y}\| \), aka Cauchy-Schwartz Inequality
  2. \( \| \vec{x} + \vec{y} \| \le \|\vec{x}\| + \|\vec{y}\| \), aka Triangular Inequality
  3. \( \vec{a} \cdot \vec{a} = \|\vec{a}\|^2 \), which can be easily verified.
  4. \( \vec{a} \cdot \vec{b} = \|\vec{a}\| \|\vec{b}\| \cos{\theta} \), where \(\theta\) is the angle between \(\vec{a}\) and \(\vec{b}\). Can be verified based on (3).
  5. \(\displaystyle \vec{a} \times \vec{b} = \|\vec{a}\| \|\vec{b}\| \sin{\theta} \, n \), where \(n\) is the unit vector perpendicular to the plane containing \(\vec{a}\) and \(\vec{b}\). Note the cross product between two vectors is applicable only in \(\mathbb{R}^3\). Based on (4), there is a nice proof at Khan Academy.
  6. \( \vec{a} \times (\vec{b} \times \vec{c}) = \vec{b} (\vec{a} \cdot \vec{c}) - \vec{c} (\vec{a} \cdot \vec{b}) \). Very optional with nice proof at Khan Academy.
  7. How to determine the linear equation, \(Ax + By + Cz = D\), of a plane in \(\mathbb{R}^3\) if given a point on the plane, and a normal vector, which is the vector perpendicular to the plane ?
  8. Conversely, how to determine the normal vector if given the linear equation of a plane in \(\mathbb{R}^3\) ? Turns out if the plan is \(Ax + By + Cz = D\), the normal vector \(\vec{n}\) is simply \(Ai + Bj + Ck\), where \(i, j, k\) are the unit vectors of the respective \(x, y, z\) coordinates.
  9. Given a plane, \(Ax + By + Cz = D\), and a point vector \(x_0i + y_0j + z_0k \) outside of the plane, how to determine the shortest distance \(d\) from the point vector to the plane ? Turns out: \(\displaystyle d = \frac{Ax_0 + By_0 + Cz_0 - D}{\sqrt{A^2 + B^2 + C^2}}\)
Footnotes:

Wednesday, March 20, 2013

 

Half Angle Trig Identities

  \[ \begin{aligned} \sin \frac{u}{2} &= \pm \sqrt{ \frac{1 - \cos u}{2} } \\ \cos \frac{u}{2} &= \pm \sqrt{ \frac{1 + \cos u}{2} } \\ \tan \frac{u}{2} &= \pm \sqrt{ \frac{1 - \cos u}{1 + \cos u} } = \frac{\sin u}{1 + \cos u} = \frac{1 - \cos u}{\sin u} \\ \end{aligned} \]
Useful and not hard to verify.

 

Sum and Difference Trig Identities

  \[ \begin{aligned} \sin(A+B) &= \sin A\cos B + \cos A\sin B \\ \sin(A-B) &= \sin A\cos B - \cos A\sin B \\ \cos(A+B) &= \cos A\cos B - \sin A\sin B \\ \cos(A-B) &= \cos A\cos B + \sin A\sin B \\ \tan(A+B) &= \frac{\tan A + \tan B}{1 - \tan A \tan B} \\ \tan(A-B) &= \frac{\tan A - \tan B}{1 + \tan A \tan B} \\ 1 + \tan^2 x &= \sec^2 x \\ \end{aligned} \]
Note for \(\sin(A+B)\) and \(\cos(A+B)\), Khan Academy has some nice proofs. Notice \(\cos -\theta = \cos \theta \) and \(\sin -\theta = - \sin \theta \). The other identities are not hard to verify.

Euler's Formula

On the other hand, you may never have to memorize these formulas. Here is why. By Euler's formula:
  \[ \begin{aligned} e^{i(x+y)} &= \cos(x+y) + i \sin(x+y) \\ &= e^{ix} e^{iy} = (\cos x + i \sin x) \cdot (\cos y + i \sin y) \\ &= (\cos x \cdot \cos y - \sin x \cdot \sin y) + i(\sin x \cdot \cos y + \cos x \cdot \sin y) \\ \end{aligned} \]
and therefore
  \[ \begin{aligned} \cos(x+y) &= \cos x \cdot \cos y - \sin x \cdot \sin y \\ \sin(x+y) &= \sin x \cdot \cos y + \cos x \cdot \sin y \\ \end{aligned} \]


This page is powered by Blogger. Isn't yours?